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A B S T R A C T

Evapotranspiration (ET) is a measure of plant water use that is utilized regionally for drought detection and
monitoring, and locally for agricultural water resource management. Understanding the uncertainty associated
with this measurement is vital for science predictions and analysis and for water resource management decision
making. In this manuscript, the uncertainty in disaggregated Atmosphere-Land Exchange (disALEXI) is quan-
tified; disALEXI is an ET algorithm that utilizes land surface temperature (LST) derived from the ECOsystem
Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), as well ancillary inputs for land-
cover, elevation, vegetation parameters, and meteorological inputs. Since each of these inputs has an associated,
and potentially unknown, uncertainty, in this study a Monte Carlo simulation based on a spatial statistical model
is used to determine the algorithm's sensitivity to each of its inputs, and to quantify the probability distribution
of algorithm outputs. Analysis shows that algorithm is most sensitive to LST (the input derived from ECOSTR-
ESS). Significantly, the output uncertainty distribution is non-Gaussian, due to the non-linear nature of the
algorithm. This means that ET uncertainty cannot be prescribed by accuracy and precision alone. Here, un-
certainty was represented using five quantiles of the output distribution. The distribution was consistent across
five different datasets (mean offset is 0.01mm/day, and 95% of the data is contained within 0.3mm/day). An
additional two datasets with low ET, showed higher uncertainty (95% of the data is within 1mm/day), and a
positive bias (i.e., ET was overestimated by an average of 0.12mm/day when ET was low).

1. Introduction

The ECOsystem Spaceborne Thermal Radiometer Experiment on
Space Station (ECOSTRESS) was launched on June 29th, 2018, and
measures the earth's surface temperature in order to detect vegetation
stress. ECOSTRESS is a fine-resolution (70m), multiple-wavelength,
imaging radiometer that captures light in the thermal part of the
electromagnetic spectrum. It takes measurements in three spectral
bands between 8 and 12.5µm. ECOSTRESS was designed to address the
response of the terrestrial biosphere to changes in water availability,
the impact of diurnal vegetation water stress on the global carbon cycle,
and reduction in agricultural vulnerability through improved water
resource management.

In order to achieve these goals, ECOSTRESS is used to determine
evapotranspiration (ET), a combination of plant surface evaporation of

water (from soils and water intercepted by plant canopies), and the
transpiration from plant leaves and stems (released via the stomata).
The stomatal behavior is driven by light levels, soil water availability,
temperature and vapor pressure, and the stomata will close if the plant
is water-stressed (Mu et al., 2011). Therefore, a reduction in ET is an
indicator for vegetation stress, and this change happens before the ve-
getation loses greenness (Anderson et al., 2016).

After precipitation, ET is the largest global contributor to the ter-
restrial water cycle, returning up to 60% of precipitated water to the
atmosphere (Mu et al., 2011). Therefore, accurate estimation of ET with
fully characterized uncertainties is vital in order to understand the
hydrological cycle. Accurate ET monitoring at the scale of an agri-
cultural field will provide the tools to identify small areas where
changes in land and water management will have the greatest effect on
food security (Anderson et al., 2016). Uncertainty is defined as the
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probability distribution of the model output about true ET. Information
about this distribution is required for making inferences in subsequent
applications of the ET product. For example, water resource managers
rely on knowledge of the ET and uncertainty in order to make informed
decisions, and drought forecast models require uncertainty in order to
propagate those values through their own models to determine forecast
accuracies.

Generally, there are three classes of techniques that are used to
calculate ET from remotely sensed data: empirical models that relate ET
to certain vegetation indices; physical models that calculate ET directly;
and physical models that calculate ET as the residual of the surface
energy balance, such as the Atmosphere Land Exchange model (ALEXI)
and the disaggregated form of the algorithm, disALEXI. This manuscript
proposes a methodology that provides a way to characterize and then
propagate input uncertainties through the disALEXI ET model. This is a
framework that enables both sensitivity analysis and uncertainty
quantification, where the input uncertainty is modeled using a multi-
variate spatial-statistical model. This framework is demonstrated in
several real ECOSTRESS examples. In addition, this work aims to in-
vestigate whether the final uncertainty can be adequately described by
traditional metrics such as accuracy and precision (which assume that
the uncertainty is Gaussian).

In this manuscript, uncertainty in disALEXI ET estimates is quanti-
fied using a Monte Carlo approach to propagate uncertainties through
the disALEXI algorithm. Section 3 describes the disALEXI model that is
used to generate estimates of ET from ECOSTRESS data. Since true ET is
unknown, uncertainty is quantified through a simulation experiment
that generates an ensemble of synthetic, true spatial fields derived from
an ECOSTRESS parent input field. The underlying assumption is that
the relationship between the synthetic ensemble members and the
parent data is similar to the relationship between the parent data field
itself and the true ET field. To simulate the ensemble members, a spa-
tial-statistical model was fitted to the parent data, and then the en-
semble members were simulated from that model. The model preserves
realistic spatial and inter-variable correlation structures; details are
given in Section 4. Results are provided in Section 6. Finally, there is a
discussion of significance, and means by which to provide this un-
certainty information to the user community.

2. Background

Currently, several ET products are available, and each has its own
definition of uncertainty. Mapping ET with high Resolution and
Internalized Calibration (METRIC) uses Landsat imagery and is applied
to scenes with associated in-scene information and weather stations
(Allen et al., 2007). METRIC has been applied to sites in several states in
the US. The algorithm requires site-specific calibration, and the sensi-
tivity of this calibration has been studied in Morton et al. (2013). In that
study, 100 Monte Carlo runs were used to randomly select pixel samples
from the input Landsat imagery, which were used to set the calibration
coefficients, and the overall sensitivity was presented as a mean, stan-
dard deviation, and coefficient of variation (Morton et al., 2013). The
average “uncertainty” was defined by the sensitivity analysis and was
determined to be 5% of the true value.

Other models, such as the Surface Energy Balance Algorithm over
Land (SEBAL) (Bastiaanssen et al., 1998) and Surface Energy Balance
System (SEBS) (Su, 2002) combine satellite remote sensing with an-
cillary inputs to estimate the residual of the surface energy balance
model. Analysis for SEBAL showed that the ET outputs were non-
Gaussian, and therefore, the authors in Kiptala et al. (2013) used non-
parametric statistical inference methods to test the difference between
SEBAL and the MODIS global ET product — MOD16. This was defined
as the “uncertainty quantification” for the study done by Kiptala et al.
(2013). A Bayesian Inference study was carried out in order to study the
“uncertainty” in SEBS for twelve flux towers (Ershadi et al., 2013). The
mean and standard deviation of inputs measured by the flux tower was

used as the prior, and the simulated ET was compared to measured ET
in order to determine sensitivity. The algorithm was most sensitive to
LST.

MOD16 1 km ET products are available for the time period
2000–2014, with regular, but not real-time, updates to the temporal
extent. MOD16 accepts albedo and meteorological input, using an al-
gorithm based on modifications to the Penman–Monteith equation (Mu
et al., 2011). This product is distributed without an associated un-
certainty, and an evaluation of MOD16 “uncertainty” described in Khan
et al. (2018) is a comparison with field data. Another study showed a
comparison between land surface models and diagnostic ET datasets,
and produced “uncertainty” as the standard deviation of the differences
across grid cells in the image, as well as analyzing sensitivities to dif-
ferent inputs such as meteorological forcings, and landcover class (Jung
et al., 2019).

The Priestley–Taylor (PT) model is also widely used, and a modified
version, PT-JPL, has historically been applied globally using AVHRR
and ISLSCP-II data (Fisher et al., 2008). The data product is available
for the time period 1986–1995 at °0.5 resolution and 1986–2006 at °1
resolution.1 PT-JPL is the second ET algorithm used for ECOSTRESS,
and an “uncertainty” field is provided as the standard deviation over
the application of several different methods, including Priestley-Taylor,
Penman–Monteith, and TSEB (Fisher, 2018). One study compared the
uncertainty of global, monthly ET generated by PT-JPL, by comparing a
set of different sources for each input (Badgley et al., 2015). Net ra-
diation was determined to be the largest contributor based on differ-
ences in ET dependent on different net radiation input sources. A sen-
sitivity study carried out in Fisher et al. (2013) showed that an input
LST with uncertainty 1 K would result in an ET accuracy 10% (Fisher
et al., 2017).

In the United States, the National Oceanic and Atmospheric
Administration (NOAA) uses ET to produce an Evaporative Stress Index
(ESI), which represents standardized anomalies in the ratio of actual ET
to potential ET (thereby normalizing out atmospheric drivers on ET,
and focusing on surface moisture constraints) as a metric for drought
monitoring. This product is available over the continental US, and uses
Geostationary Operational Environmental Satellites (GOES; 4 km spa-
tial resolution) as input to the Atmosphere Land-Exchange (ALEXI)
model (Anderson et al., 1997) – a surface energy balance algorithm
driven primarily by thermal infrared retrievals of land-surface tem-
perature. The ESI product is produced without associated uncertainty.

There is significant variation in the definition of “uncertainty” in
this community. Uncertainty quantification has been defined as a sen-
sitivity analysis (Morton et al., 2013), as a model comparison (PT-JPL)
(Kiptala et al., 2013), and as a validation against field data (Khan et al.,
2018). In this manuscript, uncertainty quantification is understood to
be none of the above, and is defined purely as model output uncertainty
that results from reasonable perturbations of the inputs.

3. ET model

The ET spatial field is derived through a two-step procedure. First
the Atmosphere Land-Exchange Inverse (ALEXI) model (Anderson
et al., 1997) ingests a set of inputs (see Table 1) and outputs ET esti-
mates at 4 km spatial resolution. Then, ET is downscaled through a
disaggregation algorithm called disALEXI. For the Jet Propulsion La-
boratory implementation of disALEXI, ET is downscaled to 70m ECO-
STRESS resolution (other implementations rescale to 30m Landsat
visible band resolution). This section contains a brief overview of the
ALEXI model, the disALEXI algorithm, and the input data required to
run them.

1 www.landflux.org/Data.php.
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3.1. ALEXI

The Atmosphere Land-Exchange (ALEXI) model (Anderson et al.,
1997) surface energy balance model was designed to minimize sensi-
tivity to errors in both input land-surface temperature and air tem-
perature boundary conditions. To accomplish this ALEXI uses time-
differential measurements of the morning surface temperature rise
obtained from geostationary satellite platforms as the primary remote
sensing input. This time-differential approach minimizes latent heat
flux errors due to absolute thermal sensor calibration and atmospheric
and emissivity corrections, which can cause biases in ET estimates.
Furthermore, above-canopy air temperature boundary conditions are
not prescribed but rather derived internally using a coupled atmo-
spheric boundary layer model, effectively incorporating impacts of lo-
calized land-atmosphere feedback which may be neglected in regional
temperature re-analyses.

ALEXI applies the “series” version of the Two-Source Energy
Balance (TSEB) model of Norman et al. (1995) at two times during the
morning - about an hour after sunrise and an hour before local noon.
The TSEB partitions the surface radiometric temperature and fluxes into
soil (subscript ‘s’) and canopy (subscript ‘c’) components, based on the
local vegetation cover fraction. The latent heat flux at each time, E, is
computed as = + =E E E R H Gc s net , where Rnet is net radia-
tion, G is the soil heat conduction flux and H is the sensible heat flux
from the surface to the atmosphere. Energy closure over the morning
interval is iteratively computed between the surface and boundary layer
components of the model. Finally, latent heat at time 2 is upscaled to a
daily energy flux ( Ed; MJm 2 d 1) using insolation as the scaling flux,
and converted to evapotranspiration (ET; mm d 1) as = EET /( * )d
where $\lambda$ is the latent heat of vaporization (MJ/g) and $\rho$
is the density of water (kg/m3).

3.2. disALEXI

For finer resolution assessments (e.g., at 70m ECOSTRESS scale), a
disaggregation scheme (disALEXI) has been developed to downscale the
4-km GOES-derived ALEXI ET product (Norman et al., 2003; Anderson
et al., 2004). In disALEXI, the TSEB is applied to the high-resolution
thermal data using a re-analysis air temperature field as an initial upper
boundary condition at a nominal blending height for a second, high
resolution implementation of ALEXI, which uses data from ECOSTRESS
and Landsat. Latent heat at the ECOSTRESS overpass time is scaled to
daily ET as in ALEXI. The air temperature boundary is then iteratively
modified on the scale of an ALEXI pixel such that the average daily ET
flux from disALEXI matches the coarser scale daily ALEXI flux

(Anderson et al., 2012), ensuring consistency in flux distribution across
scales. In this way, the algorithm utilizes the benefit of fine-resolution
ET estimation, while maintaining the benefit of using a time differential
to calculate the coarser-resolution ET to reduce the impact of atmo-
spheric corrections and other error sources.

3.3. Inputs

The ECOSTRESS implementation of disALEXI takes the following
inputs: albedo (Alb), normalized difference vegetation index (NDVI),
leaf area index (LAI), LST, viewing zenith angle (VZ), landcover, ele-
vation, wind speed(3 hourly; Wind), air temperature 30m above
ground (3 hourly; AT), short-wave downward solar radiation (insola-
tion, hourly; Ins), and the coarse resolution daily ALEXI product at 4km
resolution. ECOSTRESS LST retrievals used in disALEXI are constrained
to occur during daylight hours, using solar zenith angle as the de-
terminant. The albedo and vegetation parameters are determined from
the nearest Landsat8 overpass; the landcover map is produced by
matching to the National Landcover Database (NLCD), produced by the
Multi-Resolution Land Cover Characteristics (MRLC) Consortium; the
average scene elevation is calculated from the Shuttle Radar Terrain
Mission (SRTM); the meteorological data are obtained from the Climate
Forecast System (CFSv2) Operational Analysis; and the ALEXI ET pro-
duct is calculated daily and hosted at the Short-term Prediction
Research and Transition Center (SPoRT), Marshall Space Flight Center
(MSFC). Prior to simulation, all data have been interpolated to ECOS-
TRESS resolution in both space and time using the Python package
pyresample2 with bilinear interpolation (Fisher, 2018). This ensures
smoothness in the resampled spatial-temporal field. The inputs are
detailed in Table 1. Notably, none of the input variables come with
uncertainties, except for LST, provided by ECOSTRESS.

The standard ECOSTRESS LST uncertainty is simulated by con-
structing a wide range of feasible conditions, and using radiative
transfer code to propagate these conditions through to temperature and
emissivity retrieval. The uncertainty is parameterized as a function of
the dominant sources of error: view angle and total column water vapor
(Hulley, 2018).

Since almost all of the inputs do not come with associated un-
certainties, one needs a way to characterize representative uncertainty
in the input, which can be done through a statistical model. For con-
sistency, in this manuscript, the LST uncertainty is simulated using a
statistical model, in the same manner as the other inputs.

Table 1
Input data required for disALEXI processing. i is variable index, and j indexes variable sets. Variables in the same set will be treated jointly. Cont. and Cat. in column
3 denote continuous and categorical respectively. All datasets are publicly available, with the exception of ALEXI ET, which is hosted at Marshall Space Flight Center.
The original resolution of the input data is shown here, but all data are spatially and temporally interpolated to ECOSTRESS resolution before being used in this
manuscript.

i j Variable Type Dataset Source Spat res. Temp res.

1 1 Alb Cont. Landsat8 (Survey, 2015) EROS 30m 16d
2 1 NDVI Cont. Landsat8 (Survey, 2015) EROS 30m 16d
3 1 LAI Cont. Landsat8/ EROS/ 30m 16d/

MCD15A3H (Myneni et al., 2015) LP DAAC 1 km 1d
4 1 LST Cont. L2_LSTE ECOSTRESS 70m 1-7d
5 2 Ins Cont. CFSR (Saha et al., 2011) NCAR 0.5° 1h
6 2 Ins-avg Cont. CFSR (Saha et al., 2011) NCAR 0.5° 1d

insolation
7 3 Wind Cont. CFSR (Saha et al., 2011) NCAR 0.5° 3 h
8 4 AT Cont. CFSR (Saha et al., 2011) NCAR 0.5° 3 h
9 5 VZ Cont. L1B_GEO (Hook, 2019) ECOSTRESS 70m 1–7d
10 – ALEXI ET Cont. MSFC NASA 4 km 1d
11 – Elevation Cont. SRTM (USGS, 2004) EROS 30m –
12 – Landcover Cat. NLCD (Homer et al., 2015) MRLC 30m –

2 https://pyresample.readthedocs.io/en/latest/.
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4. Methods

One may simulate an ensemble of spatial fields of ET input variables
shown in Table 1 by fitting a spatial-statistical model (Cressie, 1993)
(Cressie and Wikle, 1993) to a parent spatial field, and generating
realizations from that model. Let the number of realizations be B. The
parent field for a particular scene is the actual data used in ECOSTRESS
processing. Each ensemble member generated from model, = …b B1, , ,
inherits the spatial and inter-variable dependence structure of the
parent, but differs according to internal variability. Internal variability
is quantified by estimating the model's parameters from the parent data.
Uncertainty in ET estimates produced by disALEXI is quantified by (1)
applying the disALEXI processing chain to all pixels in all ensemble
members in a Monte Carlo process, and (2) examining the distributions
of the B ET values at individual pixels, and the covariances between
pixels calculated from the ensembles. Appendix A provides details of
the spatial-statistical modeling procedure for the interested reader.

This method simulates 100 sets of inputs, where each input main-
tains both spatial and between-variable correlation. Each of these 100
sets of inputs are then run through the disALEXI in Monte Carlo fashion,
in order to determine the ultimate effect on uncertainty.

5. Datasets

The modeling and simulation methodology described in Section 4
was applied to seven ECOSTRESS scenes collected over the United
States at single time instances during August 2018. The scenes are en-
umerated in Table 2, and displayed in Fig. 1, which shows the output of
the disALEXI model. The selection was limited to a single month in
order to eliminate the impact of seasonal changes by holding time es-
sentially constant. A summer month was chosen because summer is the
growing season in much of the US, and because conditions were cloud-
free at the scenes under consideration at that time of year.

The scenes were also selected primarily because they were cloud-
and artefact-free, and also in order to provide an assortment of different
conditions. Six of the scenes are in California, and one is in Nebraska.
Each scene is a ×400 400 spatial array of 70-m pixels covering regions
of approximately 28 km× 28 km. Scene A is an agricultural region in
the Imperial Valley. Scene B is a different part of the same acquisition,
and shows a discrete change from agriculture to dry, barren sur-
roundings. Scene C is an agricultural area containing mostly irrigated
and rainfed corn and soybean in Nebraska, and Scene D is an oakland
savannah with medium ET values. Scene E is another agricultural area
with low ET, and Scene F has a strong gradient from the agricultural
area on the left, to grasslands on the right. Scene G is a forested site at
high elevation, where topographic shadowing and enhanced roughness
in the terrain (uncorrected for in JPL disALEXI) tend to lead to over-
estimation in ET, based on expert knowledge of the algorithm's devel-
oper (personal communication). This case serves as a test to see whe-
ther high ET is associated with high uncertainty. The horizontal striping
in Scene F is an artifact of the ECOSTRESS observing geometry;

ECOSTRESS is a push-whisk instrument, and the horizontal lines are the
result of overlapping scanlines, which will be corrected during geolo-
cation.

The filenames of the ECOSTRESS inputs are given in Appendix B.

6. Analysis and results

Two analyses were performed using the simulation results described
above: a sensitivity study and full uncertainty quantification. Both
studies use a Monte Carlo simulation using as inputs the ensemble of

=B 100 simulated spatial fields, for each scene, that were created using
the methodology described above.

Denote the parent input fields for Scenes A through G by XA0
through XG0 and the corresponding parent ET fields by EA0 through EG0.
Denote the bth simulated field of input vectors by XAb through XGb, and
the (scalar-valued) ET output fields by E*Ab through E*Gb. If =b 0 cor-
responds to the parent field and = … =b B1, , 100 corresponds to si-
mulated fields derived from the parent, then the nth pixel of the bth
input field for Scene k is,

= …X XX s s s( ) ( ( ), , ( )) ,n n nkb kb1 kbM

where X s( )nkbi is the value of the ith input variable (see Table 1),
= …i 1, ,12 and =k A B C D E F G, , , , , , .

6.1. Sensitivity analysis

The goal of sensitivity analysis is to determine which variables are
most influential in the determination of ET derived by disALEXI. A set
of experiments were performed for each scene in which all but one
input variables were held fixed at their parent data set values. The input
that was allowed to vary, called the target, assumed 100 different va-
lues generated by the simulation described in the previous section. The
empirical standard deviations of ET values under these conditions are
shown in Table 3 wherein each input successively played the role of the
target.

The nine experiments followed the procedure below:

1. Set the target variable, =i 1.
2. For = …n N1, , and = … =b B1, , 100 set

=
=

= …X i X m i
X m i

ms s
s

* ( , ) ( ) if ,
( ) if ,

1, ,9.n
k m n

n
kbm

0

kbm

Recall that, of the twelve inputs, ALEXI ET ( =m 10) and elevation
( =m 11), and landcover ( =m 12) are fixed, and never assume the
role of target variable.

3. Set

= …
= …

i X i X i
i i i

X s s s
X X s X s

* ( , ) ( * ( , ), , * ( , )) ,
* ( ) ( * ( , ), , * ( , )) .

n n n

n

kb kb1 kbM

kb kb 1 kb

The bth simulated spatial field for Scene k and target variable i is
iX* ( )kb .

4. For = … =b B1, , 100, apply the disALEXI algorithm to iX* ( )kb to
obtain iE* ( )kb , the bth simulated ET spatial field for target variable i,

= …i E i E iE s s* ( ) ( * ( , ), , * ( , )) .Nkb kb 1 kb

5. Set i to +i 1 and repeat until >i 10.

Table 3 shows the empirical standard deviations of ET, i( )ET
s , over

all N pixels and =B 100 ensemble members, for each target variable, i,
with all others held fixed:

=
= =

i E i Es( ) 1
BN

[ * ( , ) * ] ,
b

B

n

N

n k iET
s

1 1
kb ·

2

(1)

Table 2
Seven 400× 400 pixel subsets (approximately 28 km× 28 km) selected for
evaluation. Key differences between scenes are highlighted in italics. These
include location differences, and land-use type (e.g., agriculture vs. non-agri-
culture).

Scene Latitude Longitude Date Time Description

A 33.0865 115.5246 2018-08-31 18:55 Agriculture
B 33.6657 114.5690 2018-08-31 18:55 Agriculture
C 42.2543 103.1203 2018-08-24 20:09 Agriculture
D 38.3917 120.9957 2018-08-27 20:44 Oak Savannah
E 38.5425 121.8688 2018-08-27 20:44 Agriculture
F 37.1464 120.0562 2018-08-27 20:45 Grassland
G 38.5433 120.5148 2018-08-28 19:52 Forest
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Fig. 1. From left to right, top to bottom, ET calculated by disALEXI for scenes A–G.
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=
= =

E E is* 1
BN

* ( , ).k i
b

B

n

N

n·
1 1

kb
(2)

For each experiment the empirical correlation coefficient of the
target variable with ET was calculated. Results are shown in Table 4:

= = =i
E i E X i Xs s

( )
[ * ( , ) * ][ * ( , ) * ]

,b
B

n
N

n k i n k i

i
ET
s

1
BN 1 1 kb · kbi ·

ET
s s (3)

where

=
= =

X i Xs1
BN

[ * ( , ) * ] ,i
b

B

n

N

n k i
s

1 1
kbi ·

2

(4)

=
= =

X X is* 1
BN

* ( , ).k i
b

B

n

N

n·
1 1

kbi
(5)

In both tables, land surface temperature has the greatest effect on
ET. Other variables that stand out are leaf area index and albedo. This is
sensible, since disALEXI was specifically designed to take advantage of
land surface temperature, and the LAI is used to partition the soil and
canopy for the two-source energy balance equation.

6.2. Full uncertainty quantification

The goal of full uncertainty quantification is to characterize the
probability distribution of the retrieved spatial field of ET, especially its
relation to true ET. In principle, this means characterizing the N -di-
mensional distributions that describe the entire spatial field. Here,
however, the analysis will be limited to individual distributions of ET at
each pixel separately. The analysis of inter-pixel relationships required
to quantify the distribution of the field as a whole is the subject of on-
going research.

Since traditional remote sensing reports errors in terms of accuracy
and precision, which assumes an underlying Gaussian distribution, the
purposes of this uncertainty quantification experiment are to test
whether the distribution of retrieved ET values is in fact Gaussian, and
if not, offer alternative ways of representing uncertainty, instead of
using accuracy and precision.

The full uncertainty quantification experiment is depicted in Fig. 5.
It illustrates the following steps, which are applied to each scene,

=k A, B, C, D, E, F, G.

1. Simulate =B 100 synthetic spatial fields of input variables, X*kb,
= …b 1, ,100 from X ,k0 as described in Section A.2.

2. For = … =b B1, , 100, apply disALEXI to X*kb to obtain corre-
sponding synthetic fields of ET, E*kb, = …b 1, ,100.

3. Apply disALEXI to the parent field of inputs, Xk0, to obtain the
“true” ET field, Ek0.

4. For = … =b B1, , 100, calculate the difference field,

= E E* .kkb kb 0

The ensemble E s* ( )nkb , = … =b B1, , 100 is an empirical approx-
imation to the probability distribution of the retrieved ET at pixel sn in
scene k. Averaging over the B replicates at pixel sn yields and sub-
tracting the parent value at pixel sn gives the pixel bias, s¯ ( )k n , and
doing so for all pixels gives the bias field,

= … =
=B

s s s s¯ ( ¯ ( ), , ¯ ( )) , ¯ ( ) 1 ( ).k k k N k n
b

B

n1
1

kb
(6)

Since s( )k n can only be normal if E*kb is normal, the Kolmogorov-
Smirnoff test was used at 5% significance level to test the null hy-
pothesis,

H s s s: ( ) Gau( ¯ ( ), ˆ ( )),k n k n k n0

where

=
=B

s s sˆ ( ) 1 [ ( ) ¯ ( )] ,k n
b

B

n k n
1

kb
2

(7)

for each sn, = …n N1, , and =k A, B, C, D, E, F, G. There were no
pixels in scenes A, B, D, F, or G that were determined to be Gaussian. To
illustrate, typical results, Fig. 2 shows smoothed histograms of kb,

= … =b B1, , 100, for three representative pixels in Scene A. In Scenes C
and D, 1.2 and 2.7 percent of the pixels were found to be Gaussian,
respectively.

The vast majority of pixels in all scenes are non-Gaussian, so it
makes sense to summarize the bias distributions using quantiles rather
than accuracies and precisions. Fig. 3 shows six images for Scene C. The
upper-left is the bias for reference. Bias values are all in the range
±1.5mm/day, which is high for a low-ET scene. This represents relative
errors of up to 25% of the average parent value of ET over all pixels in
E0:

Table 3
Empirical standard deviations of ET for the sensitivity study. For each scene, the
variable with the highest standard deviation is highlighted in italics. Note that
ALEXI ET equals the aggregated ET by design, and is therefore not considered.

Scene VZ AT Alb Ins Ins-avg LAI LST NDVI Wind

A 0.02 0.02 0.21 0.02 0.01 0.17 0.13 0.04 0.02
B 0.02 0.007 0.27 0.002 0.04 0.33 0.55 0.02 0.02
C 0.01 0.01 0.12 0.01 0.005 0.35 0.92 0.03 0.05
D 0.003 0.006 0.21 0.002 0.004 0.09 0.44 0.002 0.01
E 0.02 0.01 0.20 0.02 0.03 0.31 0.63 0.01 0.01
F 0.003 0.003 0.18 0.003 0.01 0.11 0.41 0.01 0.01
G 0.04 0.02 0.10 0.02 0.01 0.31 0.93 0.01 0.03

Table 4
Empirical correlations between ET and the target variable for the sensitivity
study. For each scene, the variable with the highest absolute value is high-
lighted in italics. Note that ALEXI ET equals the aggregated ET by design, and is
therefore not considered.

Scene VZ AT Alb Ins Ins-avg LAI LST NDVI Wind

A 0.07 0.06 0.43 0.19 0.20 0.43 0.83 0.37 0.05
B 0.12 0.26 0.55 0.20 0.20 0.73 0.74 0.55 0.16
C 0.20 0.17 0.25 0.17 0.17 0.22 0.56 0.29 0.20
D 0.003 0.01 0.26 0.05 0.02 0.45 0.24 0.26 0.01
E 0.02 0.08 0.26 0.08 0.12 0.16 0.51 0.29 0.14
F 0.47 0.41 0.44 0.33 0.40 0.69 0.72 0.59 0.47
G 0.28 0.28 0.20 0.26 0.24 0.44 0.58 0.23 0.12

Fig. 2. Smoothed histograms of differences, s( )b nA , = …b B1, , , for three ty-
pical pixels (sn choices) in Scene A.
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The remaining five images are quantile fields for the 5th, 25th, 15th,
75th, and 95th quantiles of the ensemble of B values at each pixel. Let
the th quantile of …s s{ ( ), , ( )}k n n1 kB be,

=
=

q x
B

s s( ( )) argmin [ ( ) ] ,k n x
b

B
n

1

kb

(8)

Define the th quantile field as for scene k as,

= …q qq s s( ) ( ( ( )), , ( ( ))) ,k k k N1 (9)

and the scene average as,

=
=

q
N

q s1 ( ( )).k
n

N

k n
1 (10)

The five quantile maps in Fig. 3 (upper-right panel, and all remaining
panels) show the th quantiles fields for Scene C. Note that the bias and
median fields look quite different, confirming that there are large

numbers of pixels with skewed (non-Gaussian) distributions. Table 5
summarizes the result of this analysis (in mm/day) for all scenes. The
bias and quantile values shown are averages, over all pixels in the
scene, expressed as percentages of Ek0.

Table 5 shows that the majority of scenes have biases close to zero,
with the 75th quantile within ±15% of parent ET, and the 95th
quantile within ±30% of parent ET. The notable exceptions are the
two low-ET scenes, C and E. In these cases, the quantiles of the bias
values are much higher. Even when the normalization step is removed
(see Fig. 4), scenes C and E have a higher (absolute) ET difference than
the higher-ET datasets (scenes A, B, D, F, and G). Datasets C and E are
also not centered at zero, with the simulated dataset outputs producing
higher mean ET values than the original (negative bias), by approxi-
mately 10%.

In Fig. 3, one can see the structure in the quantiles. In the higher
quantiles, the irrigated fields are highlighted. In the lower quantiles, the
spaces between the pivot irrigation are seen. There is a particular sec-
tion (bottom far left) where the irrigated fields have lower values in all
quantiles, but in general, the irrigated fields follow the same spatial
pattern in all quantiles, in that the fields have higher uncertainty values

Fig. 3. From left to right, top to bottom, the mean difference ET (bias), and the 5th, 25th, 50th, 75th, and 95th percentiles of the difference image (not normalized),
in mm/day, for image C.
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than the background.
Fig. 4 shows the raw ET values for each scene, as well as the raw

bias in each scene (unnormalized). Scenes C and E have low ET values,
but comparable biases to the other scenes, which is a higher proportion
of parent ET than expected. Despite the scene differences (such as
spatial location, landcover type, meteorological conditions), none of
these had any apparent effect on the biases represented by the quan-
tiles. Fig. 4 shows the differences per scene in mm/day.

7. Discussion

Here, a model is proposed that exploits the internal statistical
variability of the data themselves through simulation, and quantifies
uncertainty through simulated probability distributions of the quan-
tities of interest. Land surface temperature (LST) is the leading driver of
uncertainty in disALEXI ET, although albedo and leaf area index (LAI)
are important as well. In addition, the per-pixel distributions of ET are
almost universally non-Gaussian. This means that precision and accu-
racy are not adequate metrics to describe uncertainty, so quantiles may
be more beneficial in order to summarize the distributions of ET. It also
means that it is not possible to use simple linear error propagation to
quantify the effects of changes in inputs on disALEXI output.

The bias of the ET estimates is consistent across five different scenes,
and generally robust to changes in inputs across geophysical conditions.
The biases for scenes A, B, D, F, and G are generally within about four
percent of the true ET values in these simulations. The two scenes with
low ET (scenes C and E), showed higher (absolute) bias. Since the ET
values are lower, one might expect a lower raw bias (unnormalized),
since ET error is thought to be proportional to value, and is usually
expressed as a percentage. However, Fig. 4 shows that this is not the
case.

For scenes A, B, D, F, and G, in the 75th quantile, the values of
× q E100 /k k.75 0, are within 15% of the parent ET value (see Table 5). The

scenes with low ET (scenes C and E), showed higher deviations (75th
quantile showed values up to 30% of the parent ET). This is true for all
quantiles.

Note the similarities in all the quantiles for scenes A, B, D, F, and G,
as well as the overestimation of low ET (scenes C and E). The 75th
quantile of the bias of ET is within 15% of the parent value. This is
slightly higher than the 10% derived from validation, as seen in other
ET models using ECOSTRESS. This reflects the difference between un-
certainty quantification and validation; overall the uncertainty was
higher than observed in validation studies.

8. Conclusion

In this manuscript, a method for quantifying sensitivity and un-
certainty in retrievals of ET from remote sensing data acquired by
ECOSTRESS was introduced. A single month of data was used to illus-
trate this method, by way of introduction. While this should not be
considered representative of all input data combinations, the variability
seen was indicative of the expected uncertainty during summer months
in North America. The method fits and then simulates from a spatial-
statistical model of the ET field and its inputs. Crucially, variable-to-
variable, spatial, and cross-variable-spatial relationships are main-
tained. While this method is general and could be applied to data from
other remote sensing instruments, it has been used here to evaluate the
performance of the disALEXI ET model retrieval for ECOSTRESS.

An important note is the distinction between validation (compar-
ison with field data), verification (comparison with other models) and

Table 5
The normalized bias and quantiles expressed percentages of the average value of ET in the parent scene.

k × E100 k0 × E100 ¯ /k k0 × q E100 /k k0.05 0 × q E100 /k k0.25 0 × q E100 /k k0.50 0 × q E100 /k k0.75 0 × q E100 /k k0.95 0

A 2.41 4.04 17.20 3.49 4.12 11.78 24.81
B 2.70 0.49 36.13 14.22 0.93 14.45 36.92
C 1.70 9.29 98.77 41.77 11.40 22.25 87.78
D 2.60 1.52 30.29 10.74 0.97 8.02 27.86
E 1.21 5.85 93.78 41.67 12.36 28.92 94.94
F 2.52 3.21 31.75 12.09 3.37 5.49 26.68
G 4.87 0.26 34.42 8.11 2.62 11.16 24.21

Fig. 4. Distribution of (top) the original ET values for each scene, and (bottom)
the distributions of pixel biases (unnormalized) for each scene, in mm/day. The
center line is the median, and the outer edges of the box represent the 25th and
75th percentiles, respectively. The red + marks represent values outside the 1st
and 99th percentiles. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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uncertainty quantification. Here, uncertainty quantification is defined
to be the variability of the output of the disALEXI model, when all in-
puts are varied in a way that is reasonable. Here, the reasonable input
variation is taken from the data itself, and the structure of the data is
maintained.

Uncertainty is vital because (a) it is needed for robust scientific
investigation in order to separate hypotheses, (b) it is vital for risk as-
sessment, and (c) because it has been lacking in past investigations.
Uncertainty may be used by modelers and users in the agricultural and
water resource communities.

It was found that scene-based ET uncertainty is generally less than
1mmday and frequently less than 0.3 mmday. The uncertainty is not
Gaussian, and is not well described using metrics such as accuracy and
precision. It is the authors’ recommendation that uncertainty be pre-
sented as a range of values with an associated confidence interval.
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Appendix A

A.1 Statistical model

Let the parent spatial field be denoted by the ×N M matrix X0 where N is the number of pixels in the field and =M 12 is the number of inputs to
the disALEXI model of ET (see Table 1). Let s be a point location that represents a pixel center (e.g., latitude and longitude), and let X s( )n0 be the
parent data set's vector of input values at the nth pixel: = …X XX s s s( ) ( ( ), , ( ))n a n M n0 0, 0, where (·) indicates vector (or matrix) transpose. Then,

=X X s{ ( )}n0 0 , = …n N1, , represents the set of M inputs over the entire field.
The model will treat certain input variables jointly since Albedo, LST, LAI, and NDVI are known to be correlated (set 1), and Insolation and Daily

mean insolation (set 2) are obviously correlated. Each of the remaining variables is a member of its own set (sets 3–8). All variables are assumed
correlated within their set, but uncorrelated with anything that is not. So, = =M mj j1

8 , wheremj is the number of variables in set j: =m 41 , =m 22 ,
and =m 1j for =j d3, , 5, 6, 7, 8. Next, the machinery for simulating spatial fields using correlated sets of variables may be developed.

Each of the pixels represented by X0 contains an M -dimensional vector that is the sum of the “true” vector of ET predictors, Y s( )n0 , plus error
s( )n :

= +X s Y s s( ) ( ) ( ),n n n0 0 (11)

where = …s s s 0 m( ) ( ( ), , ( )) ( , )n n M n1 is a vector of white noise measurement errors with an ×M M diagonal covariance matrix m whose
diagonal elements are { }i,2 , = …i M1, , . The elements in the random vector m s( )n are called the nugget effect in spatial statistics and can be
estimated by fitting empirical semivariograms near the origin as suggested in Kang et al. (2010).

Here the “true” value of the ith element of predictor vector at location sn is modeled as,

= + +Y s T s S s s( ) ( ( )) ( ( )) ( ).i n i n i i n i i n0, (12)

where T s( )i n is a ×p 1i vector of covariates and T s m( ( ))i n i models the large-scale spatial trend in the data. The term S s m( ( ))i n i harkens back to the
spatial random effects (SRE) model described in Cressie and Johannesson (2008), where S s( )i n is specified by a set of ri (r Ni ) multi-resolution
spatial basis functions and the ri-dimensional random vector Nm 0 K( , )i i . This SRE component describes the small-scale contribution to Y s( )i n0, . It
facilitates efficient computation because it provides a low-rank representation of small-scale behavior. The third term on the right-hand-side of Eq.
(12) is the fine-scale term suggested in Ma et al. (2019) and Ma and Kang (2019). It assumes that …m s s( ( ), , ( ))i i i N1 follows a spatial conditional
autoregressive (CAR) model:

= =0 Q m I H( , ), ( )/ ,i i i i i i iCAR, CAR,
1 2 (13)

where i
2 represent the conditional variance of a single element in m given all the other elements; Hi is an ×N N matrix specified according to the

neighborhood structure in the lattice over the field; i denotes the spatial dependence parameter; when = 0i , the elements in m i becomes spatially
independent. This model given by Eq. (12) is called the fused Gaussian process (FGP) (Ma et al., 2019). Eqs. (12) and (13) specify the FGP model for an
individual input variable. Next, dependence across input variables is introduced.

The FGP model is defined for a univariate spatial process corresponding to =m 1j . It is extended here to model a general m-variate spatial
process. For illustration in this manuscript, the model is presented for a bivariate process with =m 2. Extension to larger values of m, including
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= =m m 4j for some j, is straightforward. As in Ma and Kang (2019), it is assumed that m i and m i are independent for the ith input, but introduce
cross-dependence by modeling the joint distribution of m m( , )1 2 and m m( , )1 2 , respectively, which induces spatial dependence across the =m 2
inputs. In particular, it is assumed that:

=N
m
m 0 K K

K K
K K( , ) with ;1

2

1 12

12 2 (14)

that is, m 1 and m 2 are jointly normal with a + × +r r r r( ) ( )1 2 1 2 covariance matrix K. As suggested in Cressie and Johannesson (2008) and Nguyen
et al. (2012), no further parameterization of this matrix K is assumed, besides requiring it to be positive definite so that this joint distribution can be
flexible enough to describe spatial dependence that is potentially nonstationary.

To model m m( , )1 2 , assume the following multivariate CAR model:

=N
m
m

0 m m m Q( , ) with ,1

2

1

(15)

where

= =m Q I H
1

1 and ( )/ .2

Here, the ×N N(2 ) (2 ) covariance matrix m takes a separable form as a Kronecker produce of a ×2 2 correlation matrix with representing the
correlation across inputs, and the ×N N spatial covariance matrix induced by a CAR model in which is the spatial dependence parameter and 2 is
the conditional variance. This model for m includes a small number of parameters and the resulting Kronecker form also enables efficient com-
putation for parameter estimation and simulation. In addition, although the covariance matrix of m m( , )1 2 has the separable form, the covariance
matrix of the inputs are induced by both m m( , )1 2 and m m( , )1 2 and thus is not necessarily separable. Despite this, this multivariate CAR model is
just one possible formulation and there are possible alternative modeling strategies.

Combining and simplifying Eqs. (11), (12), (14), and (15) using matrix notation:

= + + +X Tm Sm m mvec( ) ,0 (16)

where

= =T T 0
0 T m

m
m

, ;1

2

1

2

= = = = ( )S S 0
0 S m

m
m m

m
m

m m
m, , , .1

2

1

2

1

2

1
2

Here, = …m s s( ( ), , ( ))i i i N1 for =i 1, 2; Ti is the ×N pi matrix whose rows are given by T s( )i n , = …n N1, , , for =i 1, 2. Similarly, Si is the ×N ri
matrix whose rows are given by S s( )i n , = …n N1, , , for =i 1, 2.

The model description above is general and can be extended for >m 2. Specifically, for example, when =m 3, the matrix m will be the ×3 3
correlation with all off-diagonal elements being , and so on for =m 4 and higher. When =m 1 the m-variate FGP model reduces to the univariate
FGP and is a special case. The model is flexible enough to allow for different covariates T (·)i and basis functions S (·)i for = …i m1, , .

The m-variate FGP model is fitted to the first set of the input variables in Table 1 (Albedo, LST, LAI, and NDVI, =i b c1, , , 4, =m 41 ) because of
known physical relationships between vegetation fraction, temperature and albedo. The same is done for Insolation and Daily solar insolation,

=i 5, 6, =m 22 ) for which the correlation coefficient is above 0.9. Three of the remaining six inputs variables are modeled individually (i.e., =m 1
for =i 7, 8, 9, =m 1j for =j 3, 4, 5) using univariate FGP. The remaining three input variables, Elevation and land cover are set to the parent data
set values and are not simulated because they are thought to not change during the time window under consideration. ALEXI ET is not simulated
because there is an enforced relationship between the final ET and ALEXI ET (since the sum of the fine resolution pixels is enforced to equal the
relevant coarse resolution pixel).

For each ECOSTRESS scene described in Section 5, six FGP models are fit, one for each variable set, = …j 1, ,5. Denote these by,

= …ˆ ˆ jm K T SFGP( , , ˆ , ˆ , ˆ ; , ), 1, , 5,j j j j j j j( ) ( ) ( )
2

( ) ( ) ( ) ( ) (17)

where subscript j( ) is included in the notations to highlight that the model parameters such as large-scale and small-scale basis functions (T S,j j( ) ( ))

may differ across the five models, = …j 1, ,5. The dimensions of the parametersˆm j( ) and K̂ j( ) are conformable with the with the corresponding basis
functions, and hats indicated that the parameter values are maximum-likelihood estimates. These are obtained via the expectation-maximization
(EM) algorithm applied to data in the scene.

Multi-resolution local bisquare basis functions (Nguyen et al., 2012) are used for both T j( ) and S j( ). The basis functions corresponding to coarse
spatial scales are used for T ,j( ) and those for finer scales are used for S j( ) as in Shi and Cressie (2007). Local spatial structure is modeled by the
proximity matrixH. This assumes on the first-order neighborhood structure, which is the simplest model possible and is used in Ma et al. (2019), Ma
and Kang (2019). The fitting procedure (estimation of the parameters using EM) is computationally feasible for data sets of the size of ECOSTRESS
scenes because of the low-rank representation Sm and the sparse matrix Q. The FGP model has been validated and demonstrated in Ma and Kang
(2019) and Li et al. (2019), and readers are referred there for further information.

A.2 Simulation

Each of the six FGP models fitted in the previous section defines a probability distribution from which one can simulate all the input values. To do
so, execute the following steps:
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1. Simulate B, 4-variate spatial fields of Albedo, NDVI, LAI, and LST: ˆ ˆX m K T SFGP( , , ˆ , ˆ , ˆ ; , )b(1), (1) (1) (1) (1)
2

(1) (1) (1) , = …b B1, , . Note that although
these B 4-variate fields are generated independently, they follow the same multivariate spatial distribution and incorporate dependence over the
space and across the four inputs.

2. Simulate B, bivariate spatial fields of Insolation and Daily mean insolation: ˆ ˆX m K T SFGP( , , ˆ , ˆ , ˆ ; , )b(2), (2) (2) (2) (2)
2

(2) (2) (2) , = …b B1, , .

3. Simulate B, univariate spatial fields of Wind speed, Air temperature, and View angle: ˆ ˆX m K T SFGP( , , ˆ , ˆ , ˆ ; , )j b j j j j j j j( ), ( ) ( ) ( ) ( )
2

( ) ( ) ( ) , = …b B1, , ;
=j 3, 4, 5.

4. Create B copies of the parent spatial field for ALEXI ET X b(6), , B copies of the parent spatial field for Elevation, X b(7), , and B copies of the parent
spatial field for Landcover, X b(8), , = …b B1, , .

5. For = …b B1, , , create a 12-variate vector of simulated predictors in each pixel,

= X X
X X X X

X s X s X s s s
s s s s

( ) [( ( )) , ( ( )) , ( ), ( ),
( ), ( ), ( ), ( )] .

b n b n b n b n b n

b n b n b n b n

(1), (2), (3), (4),

(5), (6), (7), (8), (18)

6. Denote the bth simulated spatial field by Xb,

= …X X s X s(( ( )) , , ( ( )) ) .b b b N1 (19)

To simulate a spatial field from the model m K T SFGP( , , , , ; , )2 , perform the following steps:

1. Simulate an r -dimensional vector Nm 0 I( , )1 ;
2. Simulate an (mN)-dimensional vector Nm 0 I( , )2 ;
3. Simulate an (mN)-dimensional vector m 0 I( , )3 ;
4. Compute the Cholesky decomposition of the low-dimensional ×r r matrix K with = =r ri

m
i1 such that =K FF .

5. Compute the Cholesky decomposition of the low-dimensional ×m m matrix m and sparse ×N N matrixQ, respectively, such that =m LL( ) 1

and =Q R R.
6. Note that m 1, m 2, and m 3 are simulated independently. The simulated value is calculated as + + +Tm SFm L R m m m( )1

1 1
2

1/2
3

where m 1/2 is the diagonal matrix with all elements equal to the square roots of those in m .

The simulated spatial fields of inputs, Xb, = …b B1, , , are fed to disALEXI yielding an ensemble of B univariate spatial fields of ET estimates, E*b ,

= …E EE s s* ( * ( ), , * ( )) .b b b N1 (20)

The probability distribution that describes ET uncertainty at the nth pixel is approximated by the histogram of E s* (b n values. The simulated true ET
value, E s( )n0 , can be located in this distribution. The extent to which it differs from the histogram mean,

=
=

E
B

Es s*( ) 1 * ( ),n
b

B

b n
1 (21)

is a measure of bias, and width of the histogram is a measure variability. However, there is no guarantee that this distribution will be Gaussian. In
fact, it is quite unlikely since disALEXI effects a non-linear transformation of its inputs. The question of how best to characterize these distributions
will be addressed in Section 6.

The simulation approach also allows us to probe the spatial covariance structure of the field by computing empirical covariances between pairs of
pixels, sn and sm:

=
=

E E
B

E E E Es s s s s scov( * ( ), * ( )) 1 ( * ( ) *( ))( * ( ) *( )).n m
b

B

n n m m
1 (22)

Alternatively, one could fit descriptive statistics such as variograms or even parametric covariance functions, to each of the B synthetic fields to
obtain estimates (and their uncertainties) of features such as correlation length, isotropy, etc.

When the 4-variate FGP model is fitted for Albedo, NDVI, LAI, and LST corresponding to =j 1 and =m 4j ), T(1) is specified to be intercept term,
local-bisquare basis functions at three resolutions (a total of × + × + ×5 5 10 10 20 20), together with 100 basis functions chosen from Resolution 4
as suggested in Shi and Cressie (2007); S(1) is specified to be the remaining 1500 basis functions in Resolution 4. When fitting the bivariate FGP model
for Insolation and Daily mean insolation, corresponding to =j 2, T(2) consists of the intercept term, the spatial x, and y coordinates and their squares,
respectively, while S(2) consists of local-bisquare basis functions from the first two resolutions, resulting a total of × + × =5 5 10 10 125 basis
functions. For the univariate FGP model for wind speed ( =j 3), T(3) is the intercept term, the spatial coordinates and their squares, respectively. T(4)
in the univariate FGP for air temperature is specified to be the intercept and the spatial coordinates. The univariate FGP for view angle use T(5) to be a
simple linear regression function of the x-coordinate. In all the three univariate FGP models, S j( ) consists of local-bisquare basis functions from the
first two resolutions, for =j 3, 4 and 5. In this work, the guidelines of specifying equally-spaced multiresolutional basis functions in Cressie and
Johannesson (2008) and Shi and Cressie (2007) are followed. It is also possible to choose basis functions in a data-driven way (Tzeng and Huang,
2018; Ma and Kang, 2019), which is beyond the scope of this work. (Fig. 5).
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Appendix B

See Table 6
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Table 6
A list of filenames used as input into the experiments conducted in this manuscript.

Scene ECOSTRESS LST filename

A ECOSTRESS_L2_LSTE_00870_009_20180831T185510_0501_02.h5
B ECOSTRESS_L2_LSTE_00870_009_20180831T185510_0501_02.h5
C ECOSTRESS_L2_LSTE_00762_007_20180824T200949_0501_02.h5
D ECOSTRESS_L2_LSTE_00809_006_20180827T204429_0501_02.h5
E ECOSTRESS_L2_LSTE_00809_006_20180827T204429_0501_02.h5
F ECOSTRESS_L2_LSTE_00809_007_20180827T204521_0501_02.h5
G ECOSTRESS_L2_LSTE_00824_013_20180828T195253_0501_02.h5

Fig. 5. Schematic diagram of uncertainty quantification methodology. The parent spatial field of inputs is in the lower-left, and the corresponding ET spatial field is
in the lower-middle. The parent field is transformed into the ET field by disALEXI (green arrows). The parent input field is also the source of the stack of simulated
input spatial fields in the upper-left via the spatial-statistical simulation. Each sheet in this stack in input to disALEXI to produce a corresponding sheet in the
simulated ET spatial field stack in the upper-right. Finally, the parent ET field is subtracted (pixel-by-pixel) from each sheet in the simulated ET stack, yielding the
stack of simulated error spatial fields in the lower-right. The blue, green, and red arrows link inputs and outputs. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

K. Cawse-Nicholson, et al. Int J Appl  Earth Obs Geoinformation 89 (2020) 102088

12

http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0005
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0005
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0005
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0010
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0010
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0010
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0015
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0015
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0015
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0020
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0020
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0020
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0025
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0025
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0025
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0025
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0030
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0030
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0030
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0035
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0035
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0035
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0040
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0040
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0045
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0045
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0050
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0055
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0055
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0055
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0060
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0060
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0060
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0065
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0065
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0065
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0070
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0070
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0070
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0070
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0070
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0070
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0075
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0075
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0080
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0080
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0080
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0080
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0085
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0090
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0090


Jung, H.C., Getirana, A., Arsenault, K.R., Holmes, T.R., McNally, A., 2019. Uncertainties
in evapotranspiration estimates over west Africa. Rem. Sens. 11, 892.

Kang, E.L., Cressie, N., Shi, T., 2010. Using temporal variability to improve spatial
mapping with application to satellite data. Can. J. Stat. 38, 271–289.

Khan, M.S., Liaqat, U.W., Baik, J., Choi, M., 2018. Stand-alone uncertainty character-
ization of gleam, gldas and mod16 evapotranspiration products using an extended
triple collocation approach. Agric. Forest Meteorol. 252, 256–268.

Kiptala, J.K., Mohamed, Y., Mul, M.L., Van der Zaag, P., 2013. Mapping evapo-
transpiration trends using Modis and Sebal model in a data scarce and heterogeneous
landscape in eastern Africa. Water Resour. Res. 49, 8495–8510.

Li, M., Kang, E.L., Cawse-Nicholson, K., Braverman, A., 2019. Multivariate Spatial
Modeling for Large Data with Remote Sensing Applications. Technical Report.
University of Cincinnati.

Ma, P., Kang, E.L., 2019. Fused Gaussian process for very large spatial data. J. Comput.
Graph. Stat. https://doi.org/10.1080/10618600.2019.1704293.

Ma, P., Kang, E., Braverman, A., Nguyen, H., 2019. Spatial statistical downscaling for
constructing high-resolution nature runs in global observing system simulation ex-
periments. Technometrics 61, 322–340.

Morton, C.G., Huntington, J.L., Pohll, G.M., Allen, R.G., McGwire, K.C., Bassett, S.D.,
2013. Assessing calibration uncertainty and automation for estimating evapo-
transpiration from agricultural areas using metric. JAWRA J. Am. Water Resour.
Assoc. 49, 549–562.

Mu, Q., Zhao, M., Running, S.W., 2011. Improvements to a modis global terrestrial
evapotranspiration algorithm. Rem. Sens. Environ. 115, 1781–1800.

Myneni, R., Knyazikhin, Y., Park, T., NASA, M.S., 2015. MOD15A3H MODIS/Combined

Terra+Aqua Leaf Area Index/FPAR Daily L4 Global 500m SIN Grid. Technical
Report. NASA LP DAAC.

Nguyen, H., Cressie, N., Braverman, A., 2012. Spatial statistical data fusion for remote
sensing applications. J. Am. Stat. Assoc. 107, 1004–1018.

Norman, J.M., Kustas, W.P., Humes, K.S., 1995. A two-source approach for estimating soil
and vegetation energy fluxes from observations of directional radiometric surface
temperature. Agric. Forest Meteorol. 77, 263–293.

Norman, J., Anderson, M., Kustas, W., French, A., Mecikalski, J., Torn, R., Diak, G.,
Schmugge, T., Tanner, B., 2003. Remote sensing of surface energy fluxes at 101-m
pixel resolutions. Water Resour. Res. 39.

Saha, S., et al., 2011. NCEP Climate Forecast System Version 2 (CFSv2) Selected Hourly
Time-Series Products, Technical Report. Research Data Archive at the National
Center for Atmospheric Research, Computational and Information Systems
Laboratory.

Shi, T., Cressie, N., 2007. Global statistical analysis of MISR aerosol data: a massive data
product from NASA's Terra satellite. Environmetrics 18, 665–680.

Su, Z., 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat
fluxes. Hydrol. Earth Syst. Sci. 6, 85–99.

Survey, U.G., 2015. Landsat Surface Reflectance Data (Ver. 1.1, March 27, 2019): U.S.
Geological Survey Fact Sheet 2015-3034. Technical Report.

Tzeng, S., Huang, H.-C., 2018. Resolution adaptive fixed rank kriging. Technometrics 60,
198–208.

USGS, 2004. Shuttle Radar Topography Mission, 1 Arc Second Scene
SRTM_u03_n008e004, Unfilled Unfinished 2.0, Technical Report. Global Land Cover
Facility, University of Maryland, College Park, MD February 2000.

K. Cawse-Nicholson, et al. Int J Appl  Earth Obs Geoinformation 89 (2020) 102088

13

http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0095
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0095
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0100
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0100
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0105
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0105
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0105
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0110
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0110
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0110
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0115
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0115
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0115
https://doi.org/10.1080/10618600.2019.1704293
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0125
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0125
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0125
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0130
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0130
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0130
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0130
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0135
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0135
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0140
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0140
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0140
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0145
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0145
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0150
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0150
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0150
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0155
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0155
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0155
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0160
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0160
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0160
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0160
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0165
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0165
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0170
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0170
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0175
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0175
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0180
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0180
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0185
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0185
http://refhub.elsevier.com/S0303-2434(19)31190-0/sbref0185

	Sensitivity and uncertainty quantification for the ECO&#132;S&#132;T&#132;R&#132;ESS evapotranspiration algorithm – DisALEXI
	Introduction
	Background
	ET model
	ALEXI
	disALEXI
	Inputs

	Methods
	Datasets
	Analysis and results
	Sensitivity analysis
	Full uncertainty quantification

	Discussion
	Conclusion
	Authors’ contribution
	Conflict of interest
	Acknowledgements
	Appendix A
	A.1 Statistical model
	A.2 Simulation

	Appendix B
	References




