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Abstract

Observing system simulation experiments (OSSEs) have been widely used as a rigor-
ous and cost-effective way to guide development of new observing systems, and to evaluate
the performance of new data assimilation algorithms. Nature runs (NRs), which are out-
puts from deterministic models, play an essential role in building OSSE systems for global
atmospheric processes because they are used both to create synthetic observations at high
spatial resolution, and to represent the “true” atmosphere against which the forecasts are
verified. However, most NRs are generated at resolutions coarser than actual observations
from satellite instruments or predictions from data assimilation algorithms. Our goal is to
develop a principled statistical downscaling framework to construct high-resolution NRs via
conditional simulation from coarse-resolution numerical model output. We use nonstationary
spatial covariance function models that have basis function representations to capture spatial
variability. This approach not only explicitly addresses the change-of-support problem, but
also allows fast computation with large volumes of numerical model output. We also propose
a data-driven algorithm to select the required basis functions adaptively, in order to increase
the flexibility of our nonstationary covariance function models. In this article we demon-
strate these techniques by downscaling a coarse-resolution physical numerical model output
at a native resolution of 1◦ latitude × 1.25◦ longitude of global surface CO2 concentrations
to 655,362 equal-area hexagons.

Keywords: Basis functions; Change of support; Conditional simulation; Nonstationary covari-
ance function; Observing system simulation experiment; Statistical downscaling
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1 Introduction

Observing system simulation experiments (OSSEs) are widely used in atmospheric studies and

climate monitoring to guide development of new observing systems including satellite missions

and ground-based monitoring networks, and to evaluate performance of new data assimilation

algorithms (e.g., Edwards et al., 2009; Zoogman et al., 2011; Errico et al., 2013; Atlas et al.,

2015; Hoffman and Atlas, 2016); see Figure 1 for a diagram of a basic OSSE. In an OSSE, a

simulated atmospheric field from a numerical model is used as the “truth” (termed a Nature Run,

or NR) to produce synthetic observations by adding suitable measurement errors and other rep-

resentative errors such as cloud mask (e.,g., Atlas et al., 2015; Hoffman and Atlas, 2016). These

synthetic observations are then fed to a data assimilation algorithm. Here, data assimilation refers

to the process of fusing ground-based or airborne observations from observing systems such as

satellites together with numerical model output, to infer the true state of geophysical processes;

see Wikle and Berliner (2007) for a formal definition of data assimilation from a statistical per-

spective. The estimated true states are typically called forecasts in atmospheric sciences. Since

OSSEs deal entirely with simulations, they provide a cost-effective approach to evaluating the

impact of new observing systems and performance of new data assimilation algorithms, and can

be used when actual observational data are not available. In particular, OSSEs can be employed

to compare competing observing system designs (e.g., Atlas et al., 2015; Hoffman and Atlas,

2016). Moreover, unlike comparison against in-situ observations, the “truth” in an OSSE (that

is, the NR) is known and uncontaminated, and thus can be directly used to better determine the

accuracy and precision of forecasts. OSSEs are also extremely useful in understanding and quan-

tifying capabilities of new satellite mission designs. For instance, Abida et al. (2017) use OSSEs

to evaluate the potential improvement in estimating global surface carbon monoxide with the pro-

posed Geostationary Coastal and Air Pollution Events Mission (GEO-CAPE). Liu et al. (2017)

use OSSEs to investigate the potential for high spatial resolution satellite NO2 observations to

estimate surface NO2 emissions.

The nature run (NR) is an essential component of an OSSE, since it provides the “true” state

of the atmosphere, from which synthetic observations are constructed. As such, it provides a

standard for evaluating the quality of forecasts from data assimilation algorithms (Figure 1). For

OSSEs to be useful, it is essential that their NRs reflect characteristics of the real atmosphere.
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Figure 1. An OSSE system. The “nature runs” (NRs) are generated by or downscaled from
numerical model outputs, and represent the assumed “true” state of the atmosphere. Synthetic
observations are simulated by adding error components to NRs to mimic realistic cloud coverage
and measurement errors. Forecasts from data assimilation algorithms are compared with NRs to
evaluate the predictive performance of these algorithms.

Hence, NRs are often generated by state-of-the-art numerical atmospheric models driven by a

set of ordinary and partial differential equations describing atmospheric chemistry and dynamics.

When such a numerical model is run for the entire globe, or for a large geographical region, model

complexity and computational limitations demand that many complex geophysical processes be

simplified, which is referred to as parameterization (e.g., Brasseur and Jacob, 2017, pp. 342-

398), and that the output be produced at low spatial and temporal resolution. On the other hand,

with advancements in sensing technologies, new ground-based and space-based instruments are

expected to provide observations with higher and higher spatial resolutions. Studies of local or

regional air quality, or anthropogenic emissions and their impacts, require high spatial resolutions

in order to be relevant for natural resource management and environmental policy decisions. As a

result, NRs in OSSEs need to be generated at increasingly high spatial resolutions. The difference

in resolution between numerical model output and that required to evaluate new sensor designs,

or for local/regional scales analyses, motivates the need to construct finer resolution outputs from

coarse-resolution numerical model outputs when generating NRs. This is called downscaling

in remote sensing and atmospheric science (e.g., Gutmann et al., 2012; Atkinson, 2013; Glotter

et al., 2014), and is an example of what is known as the change-of-support problem in spatial

statistics (Cressie, 1993; Gotway and Young, 2002; Banerjee et al., 2014).

In the OSSE literature, heuristic methods are often used to downscale (sometimes called

“preprocess” ) model output to higher resolutions (e.g., Eskes et al., 2003; Errico et al., 2013;

Tsai et al., 2014). These methods are computationally fast, but generally ad hoc. The NASA
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Global Modeling and Assimilation Office (GMAO) has run a global non-hydrostatic dynamical

core to perform cloud-system resolving experiments at resolutions as fine as 3.5 km within the

NASA Goddard Earth Observing System global atmospheric model version 5 (GEOS-5) (Putman

and Suarez, 2011). Simulations from this study provide high resolution NRs for geophysical

variables, but they are computationally expensive. For example, generating two-year GEOS-5

simulations requires 61 days of computing with 7,200 cores and a total of 10.5× 106 core hours.

These requirements make it difficult for such an approach to be used widely (Webster and Duffy,

2015).

There is a vast literature on statistical downscaling and its applications in atmospheric stud-

ies. Most of this is devoted to developing methods for comparing, correcting, or calibrating

numerical model output using observed data from physical experiments and monitoring stations

(e.g., Lenderink et al., 2007; Kloog et al., 2011; Zhou et al., 2011; Berrocal et al., 2012; Reich

et al., 2014). These methods require both numerical model output and adequate in-situ obser-

vations together in order to fit a statistical model that relates coarse-resolution model outputs

to observations. Without explicitly dealing with the change-of-support problem, many methods

use observations as response variables in simple linear regressions (or some variants), with the

model outputs as explanatory variables. For instance, Guillas et al. (2008) develop a two-step

linear regression procedure to downscale numerical model outputs, and adjust them to fit moni-

toring station data. There are also methods to extend these downscaling ideas to handle multiple

variables in space and time (e.g., Berrocal et al., 2010). In contrast, Fuentes and Raftery (2005)

address the change-of-support problem directly by expressing coarse-resolution output as the

integral/average over high-resolution grid cells, and build models using observations as ground

truth.

We also note that extensive work has been done on Gaussian process (GP) modeling for com-

puter models from which output can be viewed as spatial (or spatio-temporal) data. However,

the goals of computer model calibration (e.g., Sacks et al., 1989; Kennedy and O’Hagan, 2001),

are different from those of spatial downscaling in this paper. In computer model calibration,

a primary interest lies in estimating context-specific inputs by building a statistical model for

both computer model outputs and physical observations together, where coarse-resolution model

outputs are treated as low-accuracy data and a discrepancy term is included to model the gap

between computer models and physical reality (e.g., Kennedy and O’Hagan, 2000, 2001; Higdon
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et al., 2004). Since OSSEs are typically used to evaluate new observing systems or data assimila-

tion algorithms when actual observational data are not available, our downscaling problem uses a

single data source, that is, our method uses the numerical model output solely, without any addi-

tional observations. As such, we focus here on developing a principled model-based framework

to construct high-resolution NRs directly from coarse-resolution numerical model output.

The problem presents the following challenges. (1) Atmospheric processes usually present

nonstationary spatial structures. It is not realistic to model them with simple parametric spatial

covariance functions such as the Matérn family. More flexible covariance function models are re-

quired. (2) Although the numerical model output is obtained at coarse spatial resolution, the size

of the numerical model output can still be large. For our application, we construct global NRs of

atmospheric CO2 concentration at high spatial resolution using output from the PCTM/GEOS-

4/CASA-GFED atmospheric model, which is coupled with biospheric, biomass burning, oceanic,

and anthropogenic CO2 flux estimates (Kawa et al., 2004, 2010). This model is referred to as

PCTM hereafter. The PCTM output is generated at 1◦ latitude × 1.25◦ longitude, resulting in

a dataset of size M = 52, 128. Such a large dataset will cause computational bottlenecks for

traditional spatial statistics methods due to the computational cost of the Cholesky factorization

for the associated large covariance matrix, and memory limitations. This is the well-known “big

n” problem in spatial statistics (e.g., Cressie and Johannesson, 2006, 2008; Banerjee et al., 2008;

Nychka et al., 2015). (3) The difference between spatial resolutions of the numerical model out-

put and the desired high-resolution NRs needs to be resolved carefully, and taken into account

in the downscaling procedure. Since the numerical model output is assumed to be the “truth” at

its corresponding resolution, it is important that the resulting downscaled NRs maintain certain

essential properties of the coarse-resolution numerical model output. Previous work addresses

some of these issues. For example, Datta et al. (2016) propose a model to handle massive spatial

data, focusing on the second issue in particular. Gramacy and Apley (2015) provide a compu-

tationally efficient way to model large computer model outputs with nonstationary covariance,

thus addressing both the first and second issues. To our knowledge, all three issues have not been

discussed within a unified general modeling strategy in previous work.

Our approach to spatial downscaling follows the classical additive model in geostatistics, with

several components that characterize different spatial variabilities. As suggested in Fuentes and

Raftery (2005) and Craigmile et al. (2009), we address the change-of-support issue by building
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our statistical model for the spatial process at the highest resolution of interest. To infer the

process at fine resolution from coarse-resolution data, we use a spatial process model imposed

with necessary assumptions to avoid an ill-posed inverse problem. Such a strategy is referred

to as geostatistical regularization in geostatistics (Atkinson, 2001). To alleviate computational

difficulties associated with large data volumes, we use a nonstationary covariance function model

that combines a low-rank component for dimension reduction and a component with a diagonal

covariance matrix and/or sparse precision matrix. We extend Fixed Rank Kriging (Cressie and

Johannesson, 2008) and Fused Gaussian Process (Ma and Kang, 2018a) by making them more

flexible. We capture nonstationary spatial variability with a forward stepwise algorithm for basis

function selection. This includes both their locations and bandwidths of basis functions in the

low-rank component.

Our basis function selection method differs from that of Tzeng and Huang (2017) in that our

method is designed to learn nonstationary and localized features from the data. Tzeng and Huang

(2017) uses information about data locations, but not data values, to specify basis functions.

Other methods for nonstationary spatial modeling such as Katzfuss (2013) and Konomi et al.

(2014) require computationally intensive reversible jump Markov chain Monte Carlo methods.

In contrast, the forward stepwise algorithm we propose is simpler, more intuitive, and well-suited

for parallel computing environments. The spatial downscaling procedure is also computationally

efficient, and can produce not just one but many high-resolution statistical replicates from a

coarse-resolution spatial field because it is based on conditional simulation.

Finally, the downscaled fields produced by our method maintain two important relationships

with the coarse-resolution model output. First, the spatial dependence structure of the down-

scaling model is estimated, and thus inherited, from the coarse-resolution data. Second, when

aggregated back to the coarse resolution, our high-resolution NRs match the coarse-resolution

data exactly. Note that the numerical model output is considered as the best representation of the

geophysical process of interest and is used as the “truth” at the coarse resolution. Any departure

from this output solely due to the downscaling process cannot be physically justified. Therefore,

we impose this aggregation requirement when generating downscaled NRs. Such a requirement

has been emphasized in various environmental studies. Zhou and Michalak (2009) show that

it is important to explicitly resolve the discrepancy between the coarse and fine resolutions by

accounting for the relationship between the known, aggregated observations and the unknown
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fine-resolution attributes. In climate science, a similar aggregation constraint (also called dy-

namic downscaling) is used in regional climate modeling (e.g., Wilby and Wigley, 1997), when

coarse-resolution outputs from global climate models are used as boundary conditions for re-

gional climate models. Meanwhile, from the statistical perspective, this aggregation requirement

stems directly from the change-of-support property, where spatial observations at coarse resolu-

tion are defined as stochastic integrals over the fine-resolution process.

The remainder of this paper is organized as follows. In Section 2, we formulate the spatial

statistical model for downscaling and inference, including parameter estimation and downscaling,

via conditional simulation. The forward basis function selection algorithm is also described. In

Section 3, we present simulation studies to evaluate the performance of the proposed downscaling

method and basis function selection algorithm. In Section 4, the methodology is applied to

surface CO2 concentrations produced by PCTM at M = 52, 128 grid cells to produce a high-

resolution, downscaled field of N = 655, 362 equal-area hexagons over the globe. Section 5

concludes with discussion and future work.

2 Methodology

In this section, we present our model-based spatial downscaling framework. In particular, Sec-

tion 2.1 introduces the spatial statistical model and Section 2.2 presents basic derivations for

parameter estimation via the EM algorithm. The downscaling procedure via conditional simu-

lation is given in Section 2.3. Finally, Section 2.4 presents the forward basis function selection

procedure.

2.1 The Spatial Statistical Model

Let {Y (s) : s ∈ D} denote the atmospheric process of interest over a continuous spatial domain

D ⊂ Rd where d ≥ 1 denotes the dimension of the spatial domain, and s is a spatial location in

D. We consider the following additive model for the spatial process Y (·):

Y (s) = µ(s) + w(s) + ε(s), s ∈ D, (2.1)

where µ(·) is a trend term incorporating important covariates. The second term in (2.1), w(·),

is assumed to be a Gaussian process with mean zero, and covariance function C(s1, s2) ≡
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cov{w(s1), w(s2)} for s1, s2 ∈ D. The third term, ε(·), is modeled as a Gaussian white-noise

process in space with mean zero and variance σ2
ε > 0, independent of w(·).

With a large number of observations, parameter estimation and prediction in kriging and

Gaussian process regression become computationally infeasible. Many methods have been pro-

posed to address this problem: covariance tapering (Furrer et al., 2006), composite likelihoods

(Eidsvik et al., 2014), Gaussian Markov random fields (Lindgren et al., 2011) using low- and/or

high-dimensional random vectors to induce covariance structures that result in low-rank covari-

ance matrices and/or sparse precision matrices (e.g., Banerjee et al., 2008; Cressie and Johan-

nesson, 2008; Sang and Huang, 2012; Nychka et al., 2015; Datta et al., 2016; Katzfuss, 2017),

and local kriging (e.g., Hammerling et al., 2012; Gramacy and Apley, 2015; Tadić et al., 2015).

Most of these methods rely on the assumption that C(s1, s2) is stationary and/or has a prespec-

ified parametric form, such as the Matérn covariance family. Cressie and Johannesson (2008)

and Ma and Kang (2018a) take a different semiparametric approach. They use spatial basis func-

tions, and allow the form of the covariance function to be flexible. We use such an approach for

two reasons. First, it provides a globally valid spatial process model over the domain for joint

inference at all locations. Second, it provides increased flexibility for modeling nonstationary

behavior over a large spatial domain, as is typically the case for atmospheric processes.

We assume that the process w(·) is induced by two independent components:

w(s) = ν(s) + δ(s), s ∈ D, (2.2)

where the first term ν(·) has a basis function representation: ν(s) = S(s)Tη, s ∈ D. Here, S(·) =

(S1(·), . . . , Sr(·))T is a vector of r basis functions where r is relatively small, and so we call

this component ν(·) the low-rank component. The r-dimensional random vector η is assumed to

follow the multivariate normal distribution with mean zero and covariance matrix K. We further

assume the r× r covariance matrix K to be a general symmetric positive definite matrix without

any pre-specified form, allowing for great flexibility in modeling spatial dependence structure.

The basis functions are chosen to be compactly-supported. We describe a data-driven approach

to automatically select the centers and bandwidths of these basis functions in Section 2.4. We

will illustrate the procedure in Sections 3 and 4. In particular, we will show that the choice of

basis functions can have a substantial impact on inference, especially predictive performance.

For the second term in (2.2), we assume that the process δ(·) is induced by a high-dimensional
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random vector ξ: δ(s) = B(s)Tξ, s ∈ D. The vector ξ is defined by a discretization of the spatial

domain D into a fine-resolution lattice (which can be irregular) of N grid cells D ≡ ∪{si ∈

Ai : i = 1, . . . , N} with {Ai : i = 1, . . . , N} called basic areal units (BAUs), as suggested in

Nguyen et al. (2012). In practice, these BAUs are determined by the finest resolutions of interest

that are required to construct synthetic observations and forecasts in OSSEs. Note that N can be

very large, and can be much larger than the number of observed data points. We further model ξ

with a Gaussian random Markov field, particularly, the spatial conditional autoregressive (CAR)

model. The precision matrix of ξ is assumed to be: Q ≡ (I − γH)/τ 2, which is induced by

the full conditional distributions ξi|{ξj : j 6= i} ∼ N(γ
∑N

j=1Hijξj, τ
2), for i = . . . , N . Here,

γ is called the spatial dependence parameter. If γ = 0, the elements in ξ will be independent.

The parameter τ 2 is called the conditional marginal variance. The matrix H ≡ (Hij)i,j=1,...,N

is an N × N proximity matrix with Hii = 0, and Hij = 1 if Aj is a neighbor of Ai and is

zero otherwise, where Hij = 0 for i 6= j implies that ξi and ξj are conditionally independent

given {ξ` : ` 6= i, j}. To specify the neighborhood structure, one can choose a threshold distance

in terms of spatial adjacency; see Chapter 6 of Cressie (1993) for more details on specification

of a CAR model and examples of neighborhood structures. Following Ma and Kang (2018a),

we choose the basis function vector B(·) ≡ (B1(·), . . . , BN(·))T to be a vector of incidence

functions, where Bi(s) = 1 if the location s is in Ai and zero otherwise, for i = 1, . . . , N . For

more complicated precision structures, other types of basis functions such as piecewise linear

basis functions and Wendland basis functions can be used for Bi(·); for details see Ma and Kang

(2018a).

The model for the process Y (·) is thus,

Y (s) = µ(s) + S(s)Tη + B(s)Tξ + ε(s), (2.3)

with covariance function

CFGP (s1, s2) ≡ cov{Y (s1), Y (s2)} = S(s1)TKS(s2) + B(s1)TQ−1B(s2) + σ2
ε I(s1 = s2). (2.4)

We call this model the Fused Gaussian Process model, referred to simply as FGP in the discussion

that follows. Previous work in Cressie and Kang (2010) and Nguyen et al. (2012) assume that the

process δ(·) is a spatial white noise process with mean zero and variance σ2
ξ . This model is called

the spatial random effects model, and the resulting method is referred to as Fixed Rank Kriging
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(FRK) hereafter. The corresponding covariance function is given by,

CFRK(s1, s2) ≡ cov{Y (s1), Y (s2)} = S(s1)TKS(s2) + σ2
ξI(s1 = s2) + σ2

ε I(s1 = s2). (2.5)

In the case studied here, rather than observing the process Y (·) at BAU-level, we only have the

aggregated values of this process at coarse spatial resolution, i.e., the coarse-resolution numerical

output. The difference between the spatial resolution of this numerical model output and the NRs

we need is a type of change-of-support problem (e.g., Cressie, 1993; Gotway and Young, 2002;

Wakefield and Lyons, 2017). Suppose that the numerical model output is obtained over a total of

M coarse grid cells, {∆i ⊂ D : i = 1, . . . ,M} in the spatial domain. We call the region ∆ the

support of Y (∆) and define Y (∆) as the average of Y (·) over its support:

Y (∆) :=
1

|∆|

∫
s∈∆

Y (s) ds, (2.6)

where |∆| > 0 is the volume of ∆. This stochastic integral is defined as a mean-square limit,

which can be approximated by an appropriately weighted sum (see Cressie, 1993, Section 5.2).

An alternative and more flexible definition is Y (∆) ≡
∫

s∈∆
Y (s)h(s)ds, where h(s) is called

the impulse response or the point spread function in remote sensing science. Eq. (2.6) assumes

additionally that h(s) = 1
|∆| , if s ∈ ∆, and 0, otherwise. It is also possible to use a non-constant

impulse response (e.g., Cracknell, 1998). Although we focus on the constant case (2.6) in this

work, it is straightforward to apply our method and algorithms with a more general impulse

response.

To relate ∆ to fine-resolution BAUs, the integral (2.6) is approximated by

Y (∆) ≈ 1∑
s∈D I(s ∈ ∆)

∑
s∈D

I(s ∈ ∆) · Y (s), (2.7)

where the summation is taken over the discretized domain D with N BAUs, and I(s ∈ ∆) is an

indicator function that is equal to one if the centroid s of A lies in the region ∆, and is equal to

zero otherwise.

Let Ỹ ≡ (Y (∆1), . . . , Y (∆M))T be a vector of the numerical model output for M coarse-

resolution grid cells. We are interested in recovering the process Y (·) at BAU-level, Y ≡

(Y (s1), . . . , Y (sN))T , from Ỹ. We define the so-called M × N aggregation matrix A whose
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(i, j)-th entry aij is given by,

aij ≡
I(sj ∈ ∆i)∑
s∈D I(s ∈ ∆i)

, i = 1, . . . ,M ; j = 1, . . . , N. (2.8)

Recall that the FGP and FRK models are defined at the BAU resolution. Fortunately, it is

straightforward to obtain the marginal distributions of Y and Ỹ: Y ∼ NN(µ,Σ) and Ỹ ∼

NM(Aµ,AΣAT ), where µ = (µ(s1), . . . , µ(sN))T is a vector of trends terms defined at BAU-

level. The covariance matrix of Y can be easily derived from the covariance functions given in

Eq. (2.4) and Eq. (2.5):

Σ ≡ cov(Y) = SKST + Σδ + V, (2.9)

where S is the N × r matrix with its i-th row defined as the transpose of S(si) for i = 1, . . . , N .

The N × N matrix Σδ is obtained from the process δ(·), and takes the form Σδ = Q−1 in FGP

and Σδ = σ2
ξIN in FRK. The last term V ≡ σ2

ε IN is an N ×N matrix resulting from the process

ε(·) in Eq. (2.1). When the spatial dependence parameter γ = 0, the covariance matrix from

FGP is reduced to that of FRK. Under both models, the number of basis functions, r, is assumed

to be much smaller than the number of data points, M , which provides substantial dimension

reduction.

Note that both FRK and FGP inherit an additive structure widely used in modeling spatial

data. The modified predictive process (Finley et al., 2009), the full scale approximation (Sang

and Huang, 2012), and the multi-resolution approximation (Katzfuss, 2017), all construct additive

models based the assumption of a particular parametric covariance function such as the Matérn

covariance function. Ba and Joseph (2012) use a combination of two spatial covariance structures

together, but this requires empirical constraints on parameters, and is not designed to handle

large datasets. Comparing FRK and FGP, the latter introduces spatial dependence for the term ξ

so that the resulting model can give better predictive performance than typical low-rank models

including FRK. Numerical examples to demonstrate the robust predictive performance of FGP

for different covariance functions can be found in Ma and Kang (2018a). They also discuss other

assumptions on ξ, besides the CAR model for FGP.
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2.2 Parameter Estimation

The parameters of the models proposed in Section 2.1 are estimated using likelihood-based ap-

proaches. We follow the approach of Cressie and Kang (2010) and Nguyen et al. (2012) and

assume that the variance parameter of ε(·), σ2
ε , is known from independent validation data or

estimated separately by examining the empirical variograms (Kang et al., 2010). The trend

term is assumed to be µ(·) = X(·)Tβ with a p-dimensional vector of known covariates X(·) =

(X1(·), . . . , Xp(·))T and corresponding unknown coefficients β. Let θ denote the set of parame-

ters to be estimated. For FGP, θ consists of {β,K, τ 2, γ}, and for FRK, θ ≡ {β,K, σ2
ξ}.

Recall that the “observed” data come from the numerical model output, Ỹ, which is assumed

to follow the multivariate normal distribution with mean E(Ỹ) = Aµ, and covariance matrix

cov(Ỹ) = AΣAT . Up to an additive constant, the corresponding twice-negative-marginal-log-

likelihood function is,

−2 lnL(θ|Ỹ) = ln |AΣAT |+ (Ỹ− AXβ)T (AΣAT )−1(Ỹ− AXβ), (2.10)

where X is the N × p design matrix associated with the covariates, and the covariance matrix

Σ is given in Eq. (2.9). Note that evaluating Eq. (2.10) requires inverting and calculating the

log-determinant of the M ×M matrix AΣAT . Specifically, we have

AΣAT = (AS)K(AS)T + D−1, where

 D = [A(σ2
ξI)AT + σ2

εAAT ]−1 for FRK;

D = (AQ−1AT + σ2
εAAT )−1 for FGP.

(2.11)

Although the numerical model output, Ỹ, is defined at coarse spatial resolution, the resulting

number of grid cells, M , can still be large. For example, in the application of downscaling

atmospheric CO2 concentrations in Section 4, M = 52, 128. Recall that in the definition of A in

(2.8), the (i, j)-th element in the product of A and AT is given by

(AAT )ij =
N∑
k=1

aikajk; i, j = 1, . . . ,M.

Since any BAU A is assumed to be uniquely associated with a single coarse-resolution grid cell,

at least one of aik and ajk is zero whenever i 6= j, and the M ×M matrix AAT is diagonal. For

FRK, the matrix D = [A(σ2
ξI)AT +A(σ2

ε I)AT ]−1 is diagonal as well. Thus, the matrix AΣAT can

be inverted by applying the Sherman-Woodbury-Morrison formula (e.g., Henderson and Searle,
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1981) as follows:

(AΣAT )−1 = D− D(AS)[K−1 + (AS)TD(AS)]−1(AS)TD. (2.12)

This only requires inverting diagonal and low-rank (r× r) matrices. To calculate the determinant

|AΣAT | for FRK, we use Sylvester’s determinant identity (see Akritas et al., 1996):

|AΣAT | = |(AS)K(AS)T + D−1| = |K−1 + (AS)TD(AS)||K||D−1|, (2.13)

which involves determinants of diagonal and r × r matrices. For FGP, D = (AQ−1AT +

σ2
εAAT )−1, where Q is a sparse matrix. The Sherman-Morrison-Woodbury formula can be used

to calculate D in (2.12) as well,

D = (σ2
εAAT )−1 − (σ2

εAAT )−1A[Q + AT (σ2
εAAT )−1A]−1AT (σ2

εAAT )−1. (2.14)

This only requires solving a sparse linear system. To calculate |D−1| in (2.13) for FGP, Sylvester’s

determinant identity can be used again:

|D−1| = |Q + AT (σ2
εAAT )−1A||Q−1||σ2

εAAT |. (2.15)

So, in both FRK and FGP, the twice-negative-marginal-log-likelihood function in (2.10) can be

computed efficiently.

Here, we adapt the EM algorithms used in Katzfuss and Cressie (2011) and Ma and Kang

(2018a) to obtain maximum-likelihood estimates of the parameters θ using data Ỹ. Specifically,

the random vector η is treated as “missing data”, and the “complete data” likelihood LC(η, Ỹ)

can be obtained. Up to an additive constant, the twice-negative-complete-data-log-likelihood

function is given by

−2 lnLC(η, Ỹ) = ln |D−1|+ [Ỹ− (AX)β − ASη]TD[Ỹ− (AX)β − ASη] (2.16)

+ ln |K|+ ηTK−1η.

In the E-step of the EM algorithm, the conditional distribution of η given Ỹ under parameters θ is

multivariate normal with mean µη|Ỹ,θ = K(AS)T (AΣAT )−1(Ỹ − AXβ) and covariance matrix

Ση|Ỹ,θ = K − K(AS)T (AΣAT )−1(AS)KT . Then the conditional expectation of lnLC(η, Ỹ)

with respect to the distribution [η|Ỹ], referred to as theQ function, can be derived. In the M-step,

parameters are updated by finding the maximum of this Q function with respect to θ. For FRK,
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all parameters in θ have closed-form updates, while in FPG numerical optimization algorithms

are used to update τ 2 and γ. Note that the results in (2.12), (2.13), (2.14), and (2.15) allow

efficient computation in the execution of the EM algorithm. Details of the parameter estimation

scheme via the EM algorithm are given in Appendix A.

2.3 Statistical Downscaling via Conditional Simulation

Recall that numerical model output Ỹ is defined at coarse spatial resolution over grid cells {∆i :

i = 1, . . . ,M}. In Section 2.1, we gave the resulting distribution of Ỹ under FRK and FGP,

respectively. Our goal is to simulate the process Y (·) at fine-resolution, i.e., over all BAUs {Ai :

i = 1, . . . , N}, given the numerical model output. To avoid introducing additional notation, we

also use Ỹ to represent a realization of this random vector: the observed numerical model output.

In OSSEs, numerical models represent state-of-the-art understanding of atmospheric processes,

and so their output is assumed to be the “truth” at its corresponding resolution. Therefore, when

we downscale Ỹ to construct NRs at the resolution of the BAUs, we impose the hard constraint

that fine-resolution NRs should match the numerical model output exactly when the NRs are

aggregated from BAU-level back up to the coarse-resolution grid cells.

The conditional distribution of Y given Ỹ is derived as follows. To ensure that the simulated Y

match Ỹ after aggregation, we impose the constraint that AY = Ỹ. Using the standard result for

conditional distributions of multivariate normal distributions (e.g., Ravishanker and Dey, 2002,

pp. 156-157), the conditional distribution of Y given Ỹ is:

Y | AY = Ỹ ∼ NN(µ + ΣAT (AΣAT )−1(Ỹ− Aµ), Σ−ΣAT (AΣAT )−1AΣ). (2.17)

To efficiently compute the conditional mean vector for FRK and FGP, we use the results in

Eq. (2.12) and Eq. (2.14) to evaluate (AΣAT )−1. The conditional mean vector, µY|Ỹ ≡ µ +

ΣAT (AΣAT )−1(Ỹ−Aµ), gives the optimal spatial predictions of Y (·) at BAU-level, given data

Ỹ, under squared-error loss. The associated prediction uncertainties, i.e., the prediction vari-

ances, are the corresponding diagonal elements in the conditional covariance matrix ΣY|Ỹ ≡

Σ−ΣAT (AΣAT )−1AΣ, and can also be calculated efficiently using Eq. (2.12) and Eq. (2.14).

To construct an ensemble of NRs we simply draw samples from the conditional distribution

of Y given Ỹ. Directly sampling from this conditional distribution in (2.17) requires storing the

N ×N covariance matrix ΣY|Ỹ and performing a Cholesky decomposition on it, which results in
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O(N2) memory cost and O(N3) flops. Note that with BAUs defined at fine-resolution, N is very

large. For example, in the application of downscaling surface CO2 concentrations in Section 4,

N = 655, 362. Therefore, directly sampling from the distribution in (2.17) is prohibitive. To

circumvent this problem, we devised a step-by-step procedure to generate a sample, denoted by

YCS, from the conditional distribution. The procedure is given by Algorithm 1. The resulting

random vector, YCS, has some desirable properties, given in Proposition 1. See Appendix B for

the proof.

Proposition 1 The conditional sample YCS generated via Algorithm 1 has the following proper-

ties:

(1) The sample YCS satisfies the hard constraint: AYCS = Ỹ.

(2) The conditional distribution of YCS given AY is multivariate normal with mean E(YCS |

AY) = µ + ΣAT (AΣAT )−1(AY − Aµ) and covariance matrix cov(YCS | AY) = Σ −

ΣAT (AΣAT )−1AΣ. Thus, given AY = Ỹ, the random vector YCS follows the same distri-

bution as Y given in Eq. (2.17).

(3) The marginal distribution of YCS is multivariate normal with mean µ and covariance matrix

Σ.

(4) With the parameters θ known, if we define the mean-squared-error of YCS to beE[YCS−Y]2,

then E[YCS − Y]2 = 2[Σ−ΣAT (AΣAT )−1AΣ].

High-resolution NRs can be constructed efficiently by drawing samples from the conditional

distribution of Y given Ỹ using Algorithm 1. As stated in Proposition 1, the constraint AYCS = Ỹ

is satisfied, implying that when the high-resolution NRs are aggregated back to coarse resolution,

exactly match the numerical model output, Ỹ. In addition, the high-resolution NR, YCS, has

a marginal distribution based on the models defined for the process Y (·) at the finest scale as

discussed in Section 2.1. Parameters are assumed known in Algorithm 1. In practice they are

estimated from coarse-resolution output, Ỹ, using the EM algorithm as described in Section 2.2.

We conclude this section with remarks about computational complexity related to the down-

scaling procedures for the two models FRK and FGP in Section 2.1. As shown in Cressie and

Johannesson (2008) and Ma and Kang (2018a), both FRK and FGP have desirable change-of-

support properties, since the integration in Eq. (2.6) and summation in Eq. (2.7) for basis func-

tions can be done offline. With sparse matrices A and S, the product of A and S can be com-
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Algorithm 1 Generate a sample, YCS, from the conditional distribution of Y given the AY = Ỹ
in (2.17). Here, the subscript “CS” stands for conditional simulation.

1: Input: The numerical model output Ỹ, the M × N aggregation matrix A, σ2
ε , and θ. For

FGP, θ consists of {β,K, τ 2, γ}; for FRK, θ ≡ {β,K, σ2
ξ}.

/ / Generate YNS, a sample from the marginal distribution of Y. Here, the subscript “NS”
stands for marginal or unconditional simulation.

2: Generate a sample ηNS fromNr(0,K), requiring Cholesky decomposition of the r×r matrix
K.

3: Generate a sample εNS from NN(0, σ2
ε I), i.i.d. normal random variables with mean zero and

variance σ2
ε .

4: Generate a sample δNS from NN(0,Σδ):

• For FRK, Σδ = σ2
ξ I, thus sampling δNS as i.i.d. random variables with mean zero and

variance σ2
ξ .

• For FGP, Σδ = Q−1; this sampling step requires Cholesky decomposition of the sparse
matrix Q ≡ (I− γH)/τ 2.

5: Return YNS = Xβ + SηNS + δNS + εNS, a sample from the marginal distribution.
/ / Adjust YNS to obtain YCS, a sample from the distribution in (2.17) conditional on AY = Ỹ.

6: Calculate (AΣAT )−1(AY− AYNS) with AΣAT given in Eq. (2.11):

• For FRK, use the Sherman-Woodbury-Morrison formula as in Eq. (2.12).

• For FGP, use both Eq. (2.12) and Eq. (2.14).

7: Return YCS = YNS + ΣAT (AΣAT )−1(AY− AYNS).
/ / If more than one sample is needed, repeat Step 2 through Step 7, noting that calculating

Cholesky decompositions of matrices only needs to be done once.

puted efficiently with, at most, O(Mrb0) flops for both FRK and FGP, where b0 is the maximum

number of BAUs falling into a single coarse-resolution grid cell. To generate a unconditional

sample YNS from its marginal distribution, FRK requires O(Nr + r3) flops, while FGP requires

O(Nr + N1.5) flops. To adjust YNS to obtain YCS, evaluation of (AΣAT )−1b for a vector b of

length M is needed. Solving (AΣAT )−1b requires O(Mr2) flops for FRK, since it only needs to

calculate inversions of r × r matrices and n × n diagonal matrices, as well as multiplication of

M × r and r × r matrices. Therefore, the overall computational cost is O(Mrb0 + Mr2 + Nr)

for spatial downscaling based on FRK. For FGP, solving (AΣAT )−1b requires Cholesky decom-

position of sparse matrix Q and Q + AT (σ2
εAAT )−1A. As discussed in Rue and Held (2005),

the Cholesky decomposition of Q has O(N1.5) computational cost for a two-dimensional do-

main. Notice that the matrix AT (σ2
εAAT )−1A is a block diagonal matrix with at most b2

0 nonzero

elements for each of bN/b0c block matrices. Hence, the sparse matrix Q + AT (σ2
εAAT )−1A
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has 2Nb0 nonzero elements at most given the fact that the number of nonzero elements in Q is

smaller than Nb0. The Cholesky decomposition of Q + AT (σ2
εAAT )−1A has computational cost

O(N(p2
0 +3p0)) after appropriate reordering to obtain a band matrix with its bandwidth p0 � N ,

though solving the sparse linear system associated with matrix Q + AT (σ2
εAAT )−1A can cost

more computationally than solving that associated with Q. Therefore, the overall computational

cost is O(Mrb0 + 2N(r2 + p2
0) + N1.5r) at most for spatial downscaling based on FGP. Note

that in practice, the fine-resolution grid and corresponding BAUs are available based on the sci-

entific goals of the observing systems or data assimilation algorithms. Because its computational

complexity is related to N , it is neither practically necessary nor computationally economical

to define the spatial process at a finer spatial resolution than what is needed in OSSEs. For the

memory cost, both FRK and FGP require storage of sparse matrices A, S, AS, and the diagonal

matrix AAT , which haveO(Nr) memory cost at most. FGP also requires storage of the Cholesky

factor of an N×N sparse matrix and N×r sparse matrix, which has O(N logN +Nr) memory

cost at most. As logN � r, O(N logN) is upper bounded by O(Nr). Therefore, the overall

memory cost is O(Nr) in both FRK and FGP.

2.4 The Forward Basis Function Selection Algorithm

Basis function selection has been investigated for low-rank methods used in analyzing large spa-

tial data sets. Many methods (e.g., Banerjee et al., 2008; Sang and Huang, 2012; Katzfuss, 2017)

require pre-specification of a parametric covariance function that, in practice, is usually chosen

to be stationary. For these methods, basis functions are determined by the locations of knots, and

a pre-specified parametric covariance function. Finley et al. (2009) propose an algorithm to se-

quentially find such knot locations. For semiparametric methods including FRK and FGP, while

they avoid the assumption of a specific parametric covariance function, basis functions do need

to be specified. Cressie and Johannesson (2008) recommend compactly-supported multiresolu-

tion functions, where the centers and bandwidths of basis functions for each resolution need to

be specified. Specifically, a fixed number of resolutions (typically two or three) is chosen first.

Then, for the i-th resolution, users specify the total number of basis functions, say, ri. The cen-

ters of these ri basis functions are then regularly placed over the spatial domain, and all use the

same bandwidth. We call such basis functions equally-spaced basis functions hereafter. Readers
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are referred to Cressie and Johannesson (2008) and Nguyen et al. (2012, 2014) for examples of

these equally-spaced basis functions. Zhu et al. (2015) and Zammit-Mangion and Cressie (2017)

discuss the use of these equally-spaced basis functions, and suggest removing those where data

are rare in order to achieve stable estimation. To the best of our knowledge, no method has been

suggested to select both the centers and bandwidths of basis functions in a data-driven way.

Our method sequentially adds new basis function centers and specifies their bandwidths based

on their potential ability to improve spatial prediction. This protocol directly addresses one of the

primary purposes of spatial data analysis, i.e., spatial prediction, and tends to perform very well

in capturing nonstationary spatial variability. See our simulation study in Section 3.2. For the

numerical examples in this paper, we focus on one particular form of Wendland basis functions

(Wendland, 1995): S(u) = (1 − ‖u − c‖/r)4I(‖u − c‖ ≤ r), u ∈ D, where c is the center

and r is the bandwidth. This form of the Wendland basis function belongs to the family of

compactly-supported basis functions. Compactly-supported basis functions have been widely

adopted in previous studies (e.g., Cressie and Johannesson, 2006, 2008; Nguyen et al., 2012,

2014; Nychka et al., 2015; Shi and Kang, 2017; Ma and Kang, 2018a). For example, Cressie and

Johannesson (2008) use the bisquare basis functions, and Nychka et al. (2015) use the Wendland

basis functions that are different from ours. Zammit-Mangion and Cressie (2017) discuss other

types, such as Gaussian basis functions, that also require specification of center and bandwidth.

The method we propose can be used for other types of basis functions as well.

The basic idea is as follows. First, we define a finite set of r∗ locations spread out across

the entire domain D of interest. This set is referred to as a set of candidate centers, denoted

by S∗ ≡ {si ∈ D : i = 1, . . . , r∗}. Suppose that we pre-specify a set of r(1) basis functions

with centers C(1) ≡ {c1,1, . . . , c1,r(1)} and bandwidths B(1) ≡ {b1,1, . . . , b1,r(1)} as the initial sets

of centers and corresponding bandwidths, where the superscript stands for the iteration of the

algorithm. A possible choice is a small set of equally-spaced basis functions over the domain.

The centers and bandwidths of new basis functions are added automatically at each iteration of the

forward algorithm. At the beginning of the i-th iteration (i ≥ 1), the current set of basis functions

is used to fit data with the FRK model, which gives the estimated trend µ̂(·) and the estimated

random effects, η̂. We use the pseudo-residuals defined as D(i)(s) ≡ Y (s) − µ̂(s) − S(i)(s)η̂,

where Y (s) is the observation at location s and S(i) denotes the matrix resulting from the current

set of basis functions, to assess where basis functions should be added to improve the fit. As in
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classical geostatistics (Cressie, 1993), these pseudo-residuals can be used to carry out the local

semivariogram analysis for each observation location. The empirical-local-mean-squared error

(ELMSE) is defined for each point in the candidate centers S∗: L(i)(s) ≡ var{D(i)(u) : u ∈

N (s)}+(ave{D(i)(u) : u ∈ N (s)})2, whereN (s) denotes a local neighborhood surrounding the

location s and is chosen based on the effective range obtained from the semivariogram analysis.

The effective range is defined as the distance at which the semivariogram value achieves 95% of

the sill. New basis functions are placed where the ELMSE is large, and the bandwidths of these

basis functions are chosen corresponding to the effective range. We also impose a separation

criterion to avoid substantial overlap among the supports of the newly-added basis functions at

each iteration. We repeat these steps until the upper bound of the number of basis functions, rmax,

is reached, or the ELMSE does not change substantially. In practice, we recommend using both

together as a stopping criterion, and rmax can be chosen as large as computational constraints

allow. When computational limits are less constrained, users can set rmax larger, or even let the

stopping criterion depend solely on the change in ELMSE.

The step-by-step procedure is described in Algorithm 2. In local variogram analysis, a para-

metric variogram function, such as the exponential function, is fitted using data in a small neigh-

borhood as in Hammerling et al. (2012) via weighted least squares or maximum likelihood esti-

mation (Cressie, 1985). Tadić et al. (2015) give a less user-specified way to define the neighbor-

hood, but their method is computationally more complicated due to sampling based on pairwise

distances. We nominally set the separation distance to be two-thirds of the effective range, such

that the shortest distance between centers of two basis functions added within the same iteration

will be no less than the 1.5 times either of their bandwidths. This is motivated by the suggestion

in Cressie and Johannesson (2008) regarding overlap between supports of basis functions. To

specify the candidate centers S∗, we choose a set of grid points that covers the spatial domain,

or simply set them to be the observation locations, SO. In our simulation study presented in

Section 3.2, we set S∗ = SO, and the empirical results show that this choice is robust against

large gaps in observations, and gives improved predictive performance. In practice, to maintain

computational efficiency, only a small number, typically no more than a few hundred, of basis

functions are used (Cressie and Johannesson, 2008). The ξ term in the CAR component of FGP is

designed to capture the remaining variation. If the set of basis functions were able to capture the

spatial variation completely, the CAR model in ξ would reduce to the special case with the spa-
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Algorithm 2 Forward basis function selection.

1: Input: Observed data {Y (s) : s ∈ SO} with SO denoting the set of observation locations,
and candidate centers S∗ ≡ {si ∈ D : i = 1, . . . , r∗} with fixed and finite r∗.

// Notice that the location s is a generic notation to denote a location where a data value
is obtained. The data are not necessarily defined at BAU levels. When data are at
coarse spatial resolution, the residuals and related calculations are obtained at the same
resolution correspondingly.

2: Initialization: i ← 1; a starting set of r(i) basis functions with centers C(i) ≡
{c1,1, . . . , c1,r(i)} and corresponding bandwidths B(i) ≡ {b1,1, . . . , b1,r(i)}.

3: while the stopping criterion is not satisfied do
4: Fit the FRK model with the current basis functions.
5: Calculate the pseudo-residuals: D(i)(s) = Y (s)− µ̂(s)− S(i)(s)η̂, for all s ∈ SO.
6: for all s ∈ S∗ do
7: Perform a local semivariogram analysis to obtain the effective range, d(s).
8: Define the neighborhood N (s) ≡ {u : u ∈ SO, and ‖s − u‖ ≤ d(s)} and calculate

the empirical local mean squared error (ELMSE): L(i)(s) ≡ var{D(i)(u) : u ∈
N (s)}+ (ave{D(i)(u) : u ∈ N (s)})2.

9: end for
10: Calculate L(i)

0 , a cutoff based on {L(i)(s) : s ∈ S∗}. For example, the 90th percentile of
{L(i)(s) : s ∈ S∗}.

11: Define the set of potential centers in the i-th iteration: PC(i) = {s : L(i)(s) ≥ L
(i)
0 , s ∈

S∗}, and define the set of new centers NC(i) ← ∅, the empty set. Correspondingly,
the set of new bandwidths NB(i) ← ∅.

12: for all s ∈ PC(i) do
13: if ‖s−u‖ ≥ γ(u) for all u ∈ NC(i), where γ(u) denotes the corresponding separation

distance, here chosen to be two-thirds of the effective range, γ(u) ≡ 2d(u)/3.
then

14: Add s into NC(i), with its corresponding bandwidth, the effective range d(s),
added into NB(i).

15: end if
16: end for
17: Update: C(i+1) ← C(i) ∪NC(i), and B(i+1) ← B(i) ∪NB(i).
18: i← i+ 1
19: end while

tial dependence parameter γ = 0, or approximately zero. By placing basis functions at locations

where the current model fit is poor, and choosing bandwidths adaptively based on information

in their local semivariograms, we expect to iteratively adapt to nonstationary spatial variability.

Compared to methods in Katzfuss (2013) and Konomi et al. (2014) that require computationally

intensive procedures including reversible jump Markov Chain Monte Carlo, our method is sim-

ple, intuitive and well-suited to parallel computing environments, since local variogram fitting
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can be done in parallel.

In summary, the following inputs are required to implement Algorithm 2: the initial set of

basis functions, the set of candidate centers S∗, the cutoff value for the ELMSEs, and the stopping

criterion. The initial set of basis functions can be chosen to be a small number of equally-spaced

basis functions whose centers are from a regular coarse grid over the spatial domain. A default

choice of S∗ is the set of observation locations. In our numerical studies, we choose the 90th

percentiles of the ELMSEs as the cutoff value. This cutoff will affect how many basis functions

will be added at each iteration of the forward basis function selection algorithm, but the predictive

accuracy is not sensitive to the choice of this cutoff. For the stopping criterion, we recommend

stopping the algorithm either when the upper bound on the number of basis functions, rmax, is

reached or when the ELMSEs do not change significantly. In the numerical examples, we set the

threshold to be 0.01. Moreover, Algorithm 2 requires the user to choose the type of basis function.

In all numerical studies, we use one particular form of the Wendland basis function, but others

such as bisquare can also be used. The impact of using different types of basis functions can

be assessed via model selection criteria including BIC or cross validation. However, a thorough

empirical and theoretical comparison is beyond the scope of this work.

3 Simulation Studies

We present two simulation studies in this section. Section 3.1 presents an illustration of the

downscaling framework, and the importance of handling the change-of-support problem. In Sec-

tion 3.2, we demonstrate how our algorithm for forward basis function selection works, and its

superior performance compared to widely equally-spaced basis functions.

3.1 A Synthetic Example for Statistical Downscaling

In this section, we use synthetic data to illustrate our the statistical downscaling method. First, we

simulate a fine-resolution dataset, and aggregate it to form a coarse-resolution dataset. Then, we

downscale this coarse-resolution dataset to obtain a fine-resolution field, which we compare to the

originally simulated fine-resolution data. Specifically, we simulate from a Gaussian process with

mean µ(s) = X(s)Tβ and exponential covariance function c(h) = σ2 exp(−h/ρ) + σ2
ε I(h = 0)
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at N = 100× 100 regular BAUs in a [0, 100]× [0, 100] domain with s ≡ (x, y)T . Here, X(s) =

(1, x, y)T with β = (2, 0.5, 0.2)T , σ2 = 2, ρ = 5, and σ2
ε = 0.2. The simulated dataset is denoted

by Y = (Y (s1), . . . , Y (sN))T at the N BAUs. Then, the fine-resolution dataset Y is upscaled

to the coarse-resolution dataset at M = 50× 50 regular grid cells in the same domain, using the

change-of-support property in Eq. (2.7). The resulting coarse-resolution data are referred to as Ỹ.

To assess the quality of the downscaling approach, 10% of coarse-resolution data are randomly

held out. These are shown in white regions in Figure 2. The remaining 90% of coarse-resolution

data are treated as “synthetic observations”.

Based on synthetic observations, we implement four methods:

(1) kriging using the true parameters in an exponential covariance function model that accounts

for change of support;

(2) kriging based on estimated parameters in the exponential covariance function model with-

out handling change-of-support problem. That is, the coarse-resolution data are treated as

point-level ones at the centers of coarse-resolution grid cells;

(3) kriging based on FRK presented in Section 2.1;

(4) kriging based on FGP presented in Section 2.1.

These methods are referred to as EK, PK, FRK, FGP, respectively. Note that the kriging predictor

is indeed the conditional mean of the distribution of the true field given the data. The parameters

in FRK and FGP are estimated using maximum likelihood methods given in Section 2.2. The

basis functions are chosen at three different resolutions with 152 = 42 + 62 + 102 equally-spaced

centers. The proximity matrix in FGP is chosen based on first-order neighborhood structure.

Spatial predictions are made at all fine-resolution BAUs, and we compare the predictions

from the four methods with the “truth”, Y, by calculating the mean-squared-prediction errors

(MSPEs). We see from Table 1 that EK gives the best results as expected, since it uses the true

parameters and covariance function model, and handles change-of-support problem. PK does

not handle change-of-support problem, and treats coarse-resolution data incorrectly as being at

fine resolution. The predictions from PK are much worse than those from FRK and FGP which

do account for change of support. Between FRK and FGP, the latter gives better predictive

performance, as expected, since its model is more flexible. Figure 2 visualizes the fine-resolution

true fields and synthetic observations at coarse-resolution, together with the downscaled fields
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from FRK and FGP, over the entire region. Figure 3 shows the results zoomed-in on a [0, 20] ×

[0, 30] region. The downscaled fields from both FRK and FGP mimic the pattern presented in the

true fine-resolution field, but the FGP field is closer to Y.

Table 1. Summary of results for spatial predictions based on coarse-resolution data using four
methods: EK, PK, FRK, and FGP, respectively. “COS” stands for change of support, which
indicates whether the method deals with change of support or not.

Method EK PK FRK FGP

COS Yes No Yes Yes
MSPE 0.457 0.623 0.570 0.477

Figure 2. Simulated data and downscaling results from FRK and FGP over the entire domain
[0, 100]×[0, 100]. The top-left panel shows Y, the simulated data at fine-resolution. The top-right
panel plots the “synthetic observations” at coarse resolution, after randomly taking out 10% of
Ỹ in the white regions. Bottom panels show the downscaled fields from FRK (bottom-left) and
FGP (bottom-right).
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Figure 3. Simulated data and downscaling results from FRK and FGP, with a zoomed-in view
over the subregion [0, 20] × [0, 30]. The top-left panel shows Y, the simulated data at fine-
resolution. The top-right panel shows the “synthetic observations” at coarse resolution. Bottom
panels show the downscaled fields from FRK (bottom-left) and FGP (bottom-right).

3.2 A Toy Example for the Forward Basis Function Selection Algorithm

Here we give an example to illustrate the method and performance of our algorithm for forward

basis function selection. Consider the deterministic function f(s) = 50x exp(−x2 − y2) for

s ≡ (x, y)T in the domain D ≡ [−2, 6]× [−2, 6]. This function has two localized features inside

the subregion [−2, 2] × [−2, 2], and is almost zero everywhere else; see the top-left panel in

Figure 4. To create the synthetic true field, we generate function values of f(·) on the 100× 100

regular grid covering the domain. We add a Gaussian white noise term with mean zero and

variance σ2
ε = 0.01σ̂2

f at each grid cell, where σ̂2
f is the empirical variance of the function f(·)

evaluated at these 100 × 100 regular grid cells. We hold out data on a small block region S1 ≡

[−0.5, 0.5] × [−1.5, 1.5], referred to as “missing-by-design” locations. We also hold out data

at randomly selected 10% of the remaining grid cells S2, referred to as “missing-at-random”

locations. The remaining 90% of data are treated as “observations” for which their locations are

denoted by Do ≡ D \ (S1 ∪ S2); see the top-right panel in Figure 4.

The initial set of basis functions is chosen to be a set of 25 Wendland basis functions with

centers equally spaced over the domain, as shown in the top-left panel of Figure 5. The corre-
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sponding bandwidths are 1.5 times the shortest distance among these 25 centers, as suggested

in Cressie and Johannesson (2008). In the forward selection algorithm, we set the maximum

number of basis functions to be rmax = 200, and set the stopping criterion to be the time that

the absolute difference between the cutoff values L(i)
0 at two consecutive iterations is at or below

0.01. In our example, the forward selection algorithm stops after 12 iterations, resulting in a

total of 191 basis functions (including the original 25). The middle-left and bottom-left panels of

Figure 5 plot the centers of basis functions added at the eighth and 12th iterations, respectively.

The corresponding pseudo-residuals for these two iterations are shown in the middle-right and

bottom-right panels, respectively. We see that basis functions are placed where the variabilities

of pseudo-residuals are large. After adding the new basis functions, the model fits the data more

closely. Figure 4 shows spatial predictions and associated standard errors after the eighth and

12th iterations of the procedure. It is obvious that the predicted field is closer to the true field

using 191 basis functions (i.e., after all 12 iterations), compared to those from only the eighth

iteration. This demonstrates that our algorithm adds basis functions in a way that improves pre-

dictive performance. Figure 6 shows how the associated ELMSEs {L(i)(s)} and the cutoffs, L(i)
0 ,

change with iteration for i = 1, . . . , 12. Observe that both ELMSE and L(i)
0 decrease as basis

functions are added.

To further demonstrate the advantage of our adaptive basis function approach, we compare

our results with the more commonly used, equally-spaced basis function approach. Cressie and

Johannesson (2008), Nguyen et al. (2012), and Nguyen et al. (2014) suggest using compactly-

supported basis functions at several resolutions, but choose basis functions at the same resolution

to be equally-spaced. When we fit a model with equally-spaced basis functions, we call the

method “simple”, and we call the method “adaptive” if we instead use the adaptive basis functions

from our forward algorithm. Here, we use equally-spaced basis functions from three resolutions,

giving a total of 151(= 52 + 72 + 92 − 4) basis functions, with four basis functions removed

where data are sparse (Zhu et al., 2015; Zammit-Mangion and Cressie, 2017). We also add

additional equally-spaced basis functions at the next-finer resolution, resulting in a total of 264(=

52 + 72 + 92 + 112 − 12) basis functions.

We compare the predictive performance of the simple and adaptive methods by looking at

their corresponding mean square prediction errors (MSPEs). As shown in Table 2, simple FRK

with more basis functions (r = 264) gives better predictions at both missing-by-design and
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Figure 4. Predictions with adaptive basis functions from the forward selection algorithm. Top-
left panel shows the true deterministic field on a 100 × 100 regular grid; top-right panel shows
the observations after removing the prediction locations, S1 ∪ S2. The white box in the top-right
panel shows the missing-by-design locations, S1, and other white locations show the missing-at-
random locations, S2. The middle and bottom panels are predictions for the underlying true field,
and associated standard errors with r = 89 and 191 basis functions, respectively.

missing-at-random locations, compared to simple FRK with only r = 151 basis functions. How-

ever, using only r = 191 adaptive basis functions, adaptive FRK gives much better predictions

than simple FRK with more basis functions. Specifically, the MSPE over all missing locations

from adaptive FRK with 191 basis functions is only about 36% of that from simple FRK with

264 basis functions.

We then fit FGP in which a CAR model is assumed for the random vector, ξ. The proximity

matrix for FGP is specified by assuming a parsimonious first-order neighborhood structure. Re-

call that FGP reduces to FRK when the spatial dependence structure parameter is equal to zero,

and thus FGP is more flexible (Ma and Kang, 2018a). With 191 adaptive basis functions, adap-

tive FGP gives the best predictive performance overall. Compared to simple FRK with r = 264

functions, its MSPE, over the missing-by-design locations, is less than one-third that of simple

FRK. We see even more improvement at the missing-at-random locations: the MSPE of adaptive

FGP over these locations is 0.015, compared to 0.477 from simple FRK with 264 basis functions.
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Figure 3. Diagnostic of the forward selection algorithm at each iteration for simulation example.

-2 0 2 4 6

-2

0

2

4

6
Basis functions: r=25 Residuals for r=25

-2 0 2 4 6

-2

0

2

4

6

-20

-10

0

10

20

-2 0 2 4 6

-2

0

2

4

6
Basis functions: r=89 Residuals for r=89

-2 0 2 4 6

-2

0

2

4

6

-4

-2

0

2

4

-2 0 2 4 6

-2

0

2

4

6
Basis functions: r=191 Residuals for r=191

-2 0 2 4 6

-2

0

2

4

6

-4

-2

0

2

4

Figure 4. Adaptive basis functions and corresponding residuals. The asterisk signs in three
left panels represent 25 initial basis centers, and the dots show the observation locations. The
plus signs represent new added basis centers using the forward selection algorithm. The three
right panels show the residuals in the forward selection algorithm with different number of basis
functions r = 25, 89, 191.
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Figure 5. Adaptive basis functions and corresponding residuals for simulation example. The
asterisks in three left panels represent 25 initial basis centers, and the dots show the observation
locations. The plus signs represent new basis centers added using the forward selection algo-
rithm. The three right panels show the residuals in the forward selection algorithm with different
numbers of basis functions r = 25, 89, and 191, respectively.
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For comparison, we perform local kriging (Haas, 1990; Kitanidis, 1997). We choose a neigh-

borhood composed of 6-by-6 pixels for each location in S2, and a neighborhood of 15-by-15

pixels for each grid cell for locations in S1, and perform kriging with an exponential covariance

function. From Table 2, we see that over S1 (i.e, data missing in a contiguous region), both

adaptive FRK and adaptive FGP outperform local kriging substantially, while they give compa-

rable results over S2 (i.e., data missing at random). Note that local kriging is based on a moving

window of nearest observations. When prediction is made over a contiguous missing region,

the majority of prediction locations in that region will depend mostly on the same set of nearby

observations. In contrast, adaptive FRK and adaptive FGP, with appropriately chosen basis func-

tions, are better able to capture spatial dependence structures, and give better prediction results.

Our finding here is also consistent with that of Shi and Cressie (2007): globally valid, flexible

models such as FRK and FGP outperform local kriging and other fast non-statistical spatial pre-

diction methods, such as Inverse Distance Weighting (IDW) and Nearest Neighbors Smoothing

(NNS) for data that have contiguous missing values. Moreover, local kriging only gives marginal

inference at each location separately, but FRK and FGP, as global models over the entire spatial

domain, are able to provide joint inference at all locations of interest. This is the key to properly

quantify uncertainties with a globally valid spatial process model via conditional simulation.

We now report on computational time for methods in this simulation study. The forward

basis function selection algorithm took about 70 seconds on a Macbook Pro with a 2.8-GHz Intel

Core i7 processor. The parameter estimation and prediction took about 12, 137, 35 seconds for

adaptive FRK, adaptive FGP, and local kriging, respectively. We can see that here FRK and local

kriging are faster than FGP, but FGP gives smaller MSPE, overall.

Table 2. Numerical results for comparing local kriging, FRK, and FGP. Here, r denotes the total
number of basis functions in the low-rank component in FRK and FGP. The method is called
“simple” if equally-spaced basis functions are employed, and “adaptive” when basis functions
are selected via Algorithm 2.

Method Local Kriging
Simple FRK Adaptive FRK Adaptive FGP

r = 151 r = 264 r = 191 r = 191

MSPE(S1) 6.252 7.451 6.753 2.431 2.042
MSPE(S2) 0.010 0.495 0.477 0.019 0.015
MSPE(S1 ∪ S2) 1.929 2.634 2.407 0.761 0.638
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4 Application to PCTM

Atmospheric carbon dioxide (CO2) is one of the most important greenhouse gases. Numerical

models are typically used to study geophysical processes in carbon cycle, and to assess future

climate change (e.g., Friedlingstein et al., 2006). Specifically, high-resolution atmospheric CO2

fields over the globe produced by numerical models are often used to study atmospheric chemistry

and dynamics. Global numerical models typically generate atmospheric CO2 at relatively coarse-

resolution, say, 100 ∼ 500 km grid cells. On the other hand, since surface-level emissions are

more relevant to urban environments where the majority of people reside, high-resolution surface

observing networks are required to monitor greenhouse gas emissions, and to devise mitigation

strategies (e.g., Shusterman et al., 2016). OSSEs can be used to design these observing networks,

and to evaluate data assimilation algorithms that combine their data with space-based obser-

vations like those from Japan’s Greenhouse Gases Observing Satellite (GOSAT) and NASA’s

Orbiting Carbon Observatory-2 (OCO-2). In this section, we demonstrate how our downscaling

framework can be used to construct high-resolution NR fields for OSSEs.

In our study, we downscale surface CO2 concentrations generated by the PCTM/GEOS-

4/CASA-GFED model. This numerical model has been widely used to study global CO2 and

to evaluate mapping algorithms (e.g., Parazoo et al., 2011; Hammerling et al., 2012; Zhang et al.,

2014). We use PCTM to simulate global atmospheric CO2 concentrations, with unit parts per

million, at the surface on January 3, 2006. The spatial resolution of this output is 1◦ latitude by

1.25◦ longitude, which results in M = 181× 288 = 52, 128 grid cells over the globe. Statistical

downscaling is performed on this PCTM output to construct a global high-resolution surface CO2

field on equal-area hexagonal grid cells, with 30 km intercell distances. These hexagonal grid

cells are obtained from the Discrete Global Grid software (DGG, Sahr et al., 2003; Stough et al.,

2014), and the hexagons are used as the BAUs in our study. The surface of the Earth is uniformly

tiled by N = 655, 362 BAUs. Exploratory analysis suggests a linear trend based on latitude,

and nonstationary spatial dependence structure. In what follows, we describe how adaptive basis

functions are selected for PCTM output with our forward selection algorithm, and present the

downscaled high-resolution NRs based on both FRK and FGP.

To apply the forward basis selection algorithm, we begin with a set of 32 equally-spaced basis

functions with radii 6241.1 km obtained from Cressie and Johannesson (2008). The centers of
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these 36 basis functions are shown as blue asterisks in the left panels of Figure 7. We set the

collection of candidate centers to the set of the centroids of all grid cells. In this application,

pseudo-residuals are at the same coarse resolution as PCTM output, and local semivariogram

analyse are carried out. We use a stopping criterion that requires the number of basis functions

not exceed 450, and simultaneously, that the absolute change in the cutoff value, L(i)
0 , between

two consecutive iterations not exceed 0.01. The forward selection algorithm stops after the ninth

iteration, resulting in a total of r = 431 basis functions. The cutoff at the ninth iteration is

L
(9)
0 = 1.61, and the difference between the cutoffs at the eighth and ninth iterations is 0.17.

Figure 8 plots the ELMSEs and the cutoffs, L(i)
0 , as a function of iteration, for i = 1, . . . , 9.

The cutoff decreases as the number of iterations increases. The algorithm stops after the ninth

iteration because of the upper limit on the total number of basis functions. Recall that inference,

including parameter estimation and downscaling via conditional simulation, requires inverting

r × r matrices and storing N × r matrices, thus large r is not desirable.

With these r = 431 adaptive basis functions, we implement the downscaling framework based

on FRK and FGP. Figure 9 shows the PCTM output over the globe and the downscaled fields: the

high-resolution NRs, from conditional simulation based on FRK and FGP, respectively. Although

the spatial pattern in PCTM output is maintained by both high-resolution NRs, we judge the NR

based on FGP to be superior, since the FRK NR presents a clear “salt-and-pepper” artifact, which

is not realistic for atmospheric processes. Such “salt-and-pepper” artifacts appear more clearly

when we zoom into a subregion, as shown in Figure 10. Specifically, note that when aggregated

back to the 1◦ × 1.25◦ resolution, the high-resolution NRs from both FRK and FGP match the

PCTM output exactly. However, the FGP NR at high resolution does not present the salt-and-

pepper artifacts. Using BIC to compare FRK and FGP with 431 adaptive basis functions. We

found that BICFRK = 22.65 and BICFGP = 20.37, which also suggests that FGP performs

better than FRK. This is also consistent with the empirical results in our simulation studies that

show that adaptive FGP gives better model fit than adaptive FRK. Here, both FRK and FGP

are run on an HP Intel Xeon E5-2690 machine with 12 GB memory and four cores at the Ohio

Supercomputer Center (OSC, 1987). The adaptive basis function selection algorithm took about

15 minutes. The computation times for parameter estimation are about three minutes for FRK

and ten hours in FGP. The latter takes more time because FGP requires additional calculations

related to N × N sparse matrices and numerical optimization to update the spatial dependence
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Figure 7. Adaptive basis functions and corresponding residuals for PCTM output. The asterisks ∗
in three left panels represent 32 initial basis centers. The dots • represent new basis centers added
using the forward selection algorithm. The three right panels show the residuals in the forward
selection algorithm with different number of basis functions r = 32, 280, and 431, respectively.
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parameter in the CAR part of the model within each iteration of the EM algorithm. To generate

one downscaled NR, FRK took about one minute, and FGP about four minutes. Therefore, we

are able to produce ensembles of high-resolution NRs efficiently for both FRK and FGP. We have

tried implementing local kriging in parallel on the HP Intel Xeon E5-2690 machine with 12 GB

memory and 12 cores. Note that local kriging does not define a valid joint predictive distribution

for all BAUs. Therefore, the downscaled field from local kriging fails to satisfy the important

aggregation requirement. Furthermore, due to the large size of N = 655, 362, it took about 20

hours to run local kriging at all N BAUs. Computation time required for local kriging could be

shortened when more computing cores (and thus more extensive parallelization) are available.

5 Conclusions and Discussion

We have presented a unified model-based statistical spatial downscaling framework that can be

used in OSSEs to construct realizations of high-resolution NRs. Our model explicitly handles

change-of-support that occurs because of the gap in spatial resolutions of the numerical model

outputs and that of the desired NRs. Our downscaling framework differs from that in previous

studies in two important ways. First, we only utilize numerical model outputs and do not require

physical observations, which makes our method suitable in the context of OSSEs, in particular.

Second, our downscaled NRs match the coarse-resolution outputs exactly when they are aggre-

gated back to the resolution of the numerical model in order to preserve physical relationships

embodied in the numerical model.

We further proposed a data-driven algorithm to sequentially add basis functions to the low-

rank component of the model to learn nonstationary spatial structures and localized features from

data. This forward selection algorithm specifies both the centers and bandwidths of basis func-

tions, adaptively. When the number of observation locations is extremely large, we suggest that

our algorithm be combined with spatial clustering methods such as Marchetti et al. (2017) to fur-

ther improve computational efficiency. Our current algorithm selects the centers and bandwidths

of basis functions in a forward fashion. One interesting extension would be a modification of

such procedure to eliminate some basis centers by incorporating cross-validation steps in the al-

gorithm. LASSO-type variable selection methods (e.g. Tibshirani, 1996; Bondell et al., 2010)

can also be potentially developed for basis function selection, though more work is needed to
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Figure 9. Global map of PCTM outputs and downscaled fields. The top panel shows the surface
CO2 concentrations with unit parts per million (ppm) from PCTM at 1◦ × 1.25◦ latitude and
longitude; middle and bottom panels show the downscaled fields for surface CO2 based on FRK
and FGP at 30 km spatial resolution.
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Figure 10. PCTM outputs and aggregated downscaled fields at 1◦ × 1.25◦ resolution, and down-
scaled fields based on FRK and FGP at 30 km spatial resolution (in ppm). Top-left panel shows
the global PCTM outputs with zoom-in region identified by the black rectangle. The top-right
panel shows the PCTM outputs for the zoom-in region at 30 km resolution. Middle-left panel
shows the aggregated conditional simulated values based on FRK; middle-right panel shows the
conditional simulated values based on FRK. Bottom-left panel shows the aggregated conditional
simulated values based on FGP; bottom-right panel shows the conditional simulated values based
on FGP.

make the classical regularization terms computationally practical for large spatial datasets.

In this article, we also show that by combining the low-rank and the CAR components to-

gether in the FGP model, the resulting downscaled field and spatial predictions are improved

substantially. As in Ma and Kang (2018a), alternative models that take into account the modeling

and computational complexity trade-off can be adopted to describe spatial dependence in ξ, such
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as the Gaussian Markov random field in Lindgren et al. (2011). Expert knowledge of the likely

behavior of the fine-scale process, if available, can also be incorporated into the model for ξ.

Our downscaling framework is designed to produce NRs at very fine spatial resolution. Ide-

ally, we would like NRs not only at fine spatial resolution in a plane (horizontal resolution), but

also at fine resolution in the vertical and temporal dimensions. As our downscaling framework is

model-based, it can be extended to allow multiple input dimensions (longitude, latitude, height,

time). The tensor basis functions in Nguyen et al. (2017) provide a way to describe both vertical

and horizontal dependence. The spatio-temporal version of FGP model (Ma and Kang, 2018b)

can be used to generate NRs across time. We will consider these extensions in future work.

The current downscaling framework can be used as a building block in hierarchical models

for non-Gaussian distributions or nonlinear constraints. Compared to heuristic methods, our

downscaling framework provides a coherent and rigorous way to propagate physical relationships

at coarse resolutions down to fine resolutions. Our current downscaling framework can also be

extended to the multivariate downscaling framework to generate NRs for multiple geophysical

processes. This is closely related to the theme of super-resolution imaging (Tian and Ma, 2011),

which requires jointly downscaling multiple coarse-resolution images to obtain a single fine-

resolution image.

Finally, our downscaling model is able to generate whole ensembles of high-resolution spa-

tial fields through conditional simulation. These ensembles can facilitate probabilistic uncertainty

quantification in observation system design and data assimilation algorithm evaluation at the fine

resolutions at which those systems and algorithms are intended to operate. Meanwhile, our meth-

ods can be further extended to handle both numerical model output and physical observations,

and thus may be useful in statistical emulation and uncertainty quantification for multi-fidelity

computer models. It is also of interest to use the spatial modeling strategy in this article together

with methods for computer model calibration to address a broad range of problems including

data assimilation and retrievals in remote sensing and atmospheric sciences. These topics will be

investigated in future research.
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Appendix

A The EM Algorithm for Downscaling Models with FRK and

FGP

In this section, we will give complete derivation of EM algorithms for FRK and FGP under

downscaling framework in detail. Recall that the complete data log-likelihood function is given

in Eq. (2.16). The EM algorithm consists of two steps: E-step and M-step, and these two steps

are run iteratively starting with initial values until the EM algorithm converges. Given parameter

estimates θ[`] in the `-th iteration of the EM algorithm, the conditional distribution of η given Ỹ

is multivariate normal with mean µη|Ỹ,θ[`]
and covariance matrix Ση|Ỹ,θ[`]

, which are

µη|Ỹ,θ[`]
= K[`](AS)T (AΣ[`]AT )−1[Ỹ− (AX)β[`]], (A.1)

Ση|Ỹ,θ[`]
= K[`] −K[`](AS)T (AΣ[`]AT )−1(AS)KT

[`], (A.2)

where the subscript “[`]” indicates that the quantity is evaluated with parameters β[`],K[`], σ
2
ξ,[`] in

FRK model, and with parameters β[`],K[`], τ
2
[`], γ[`] in FGP model. In E-step, taking conditional
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expectation of the complete data log-likelihood w.r.t. η given Ỹ with parameters θ[`] will give the

Q(θ;θ[`]) function. The twice-negative Q function is

−2Q(θ;θ[`]) = Eη|Ỹ,θ[`]
[−2 lnL(η, Ỹ)]

= ln |K|+ ln |D−1|+ [Ỹ− (AX)β]TD[Ỹ− (AX)β]

− 2[Ỹ− (AX)β]TD(AS)µη|Ỹ,θ[`]
+ tr{[(AS)TD(AS) + K−1]Ση|Ỹ,θ[`]

}

+ µT
η|Ỹ,θ[`]

Ση|Ỹ,θ[`]
µη|Ỹ,θ[`]

.

In M-step, the Q function is maximized w.r.t. parameters θ to obtain updated parameters θ[`+1].

As the formulas for FRK and FGP are slightly different, we first give formulas for parameter

updates in FRK. In the downscaling model based on FRK, taking derivative of −2Q(θ;θ[`])

w.r.t. β,K, σ2
ξ and setting it to zero will give

β[`+1] = [(AX)T (AAT )−1(AX)]−1(AX)T (AAT )−1[Ỹ− (AS)µη|Ỹ,θ[`]
], (A.3)

K[`+1] = Ση|Ỹ,θ[`]
+ µη|Ỹ,θ[`]

µT
η|Ỹ,θ[`]

, (A.4)

σ2
ξ,[`+1] = {[Ỹ− (AX)β[`+1]]

T (AAT )−1[Ỹ− (AX)β[`+1] − 2(AS)µη|Ỹ,θ[`]
] (A.5)

+ tr[(AS)T (AAT )−1(AS)Ση|Ỹ,θ[`]
]}/M − σ2

ε .

In the downscaling model based on FGP, taking derivative of−2Q(θ;θ[`]) w.r.t. β,K, and setting

it to zero will give

β̂ = [(AX)TD(AX)]−1(AX)TD[Ỹ− (AS)µη|Ỹ,θ[`]
], (A.6)

K[`+1] = Ση|Ỹ,θ[`]
+ µη|Ỹ,θ[`]

µT
η|Ỹ,θ[`]

, (A.7)

where K[`+1] is updated explicitly, but β̂ depends on values of τ 2 and γ. To get parameters

updates τ 2
[`+1] and γ[`+1], the following function needs to be minimized wr.t. τ 2, γ:

f(τ 2, γ) = ln |D|+ [Ỹ− (AX)β̂]TD[Ỹ− (AX)β̂] (A.8)

− 2[Ỹ− (AX)β]TD(AS)µη|Ỹ,θ[`]
+ tr[(AS)TD(AS)Ση|Ỹ,θ[`]

],

where D = [A(I − γH)−1AT/τ 2 + AAT/σ2
ε ]
−1. By plugging in the function f(τ 2, γ) with β̂

in Eq. (A.6), numerical optimization such as interior-point or active-set algorithm can be used

to obtain optimal values for τ 2 and γ. The optimal values τ 2
[`+1] and γ[`+1] are then plugged in

Eq. (A.6) to obtain parameter updates β[`+1]. The function f(τ 2, γ) can be evaluated efficiently
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as it has same computational cost to evaluate the twice negative marginal log-likelihood function

(2.10). To accelerate the EM algorithm in FGP, we use Akein’s acceleration scheme to update EM

algorithm, which is called SQUAREM algorithm in Berlinet and Roland (2007) and Varadhan

and Roland (2008).

The initial value for β in the EM algorithms of FRK and FGP can be set as the ordinary least

square estimate β̂ols = [(AX)T (AX)]−1(AX)T Ỹ. The initial value for K can be set to 0.9σ̂2
Ỹ
Ir,

where σ̂2
Ỹ

is the empirical variance of Ỹ. The initial value for σ2
ξ is 0.1σ̂2

Ỹ
in FRK. The initial

value for τ 2 can be set to 0.1σ̂2
Ỹ

, and γ is constrained in the interval (1/λ1, 1/λN), where λ1, λN

are the samellest and largest eigenvalues for the proximity matrix H. The EM algorithm starts

with the initial values θ[`] at ` = 0, and then the E-step and M-step are carried out iteratively

with new initial values from previous M-step until certain convergence criterion is satisfied, e.g.,

the difference of the parameters θ at two consecutive iterations is less than a threshold. The

convergence of the EM algorithms is monitored by the twice-negative-marginal-log-likelihood

function (2.10).

B Technical Proofs

Proof of Proposition 1:

(1) Recall the definition of YCS in Algorithm 1, YCS = YNS +ΣAT (AΣAT )−1(AY−AYNS). It

follows immediately that AYCS = AYNS + AΣAT (AΣAT )−1(AY− AYNS) = AY. Thus,

conditional on AY = Ỹ, we have AYCS = Ỹ.

(2) Let H ≡ ΣAT (AΣAT )−1. Then YCS = YNS + H(AY − AYNS). The expectation of YCS

given AY is

E[YCS | AY] = E(YNS) + H[AY− AE(YNS)]

= µ + H(AY− Aµ),

= µ + ΣAT (AΣAT )−1(AY− Aµ).
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The covariance matrix of YCS given AY is

cov(YCS | AY) = cov(YNS −HAYNS | AY) = cov[(I−HA)YNS | AY]

= (I−HA)cov(YNS)(I−HA)T = (I−HA)Σ(I−HA)T

= Σ−ΣATHT −HAΣ + HAΣATHT

= Σ−ΣAT (AΣAT )−1AΣ.

Since YNS follows the multivariate normal distribution and YCS is a linear transformation

of YNS (conditional on AY), it is easy to verify that YCS | AY follows a multivariate normal

distribution with mean and covariance given above.

(3) It is obvious that YCS follows a multivariate normal distribution since it is a linear combi-

nation of multivariate normal vectors Y and YNS. Therefore, it suffices to show that YCS

has mean µ and covariance matrix Σ. It follows that

E(YCS) = E[E(YCS|AY)] = µ + H[AE(Y)− Aµ] = µ.

The covariance matrix of YCS is

cov(YCS) = cov(YNS −HAYNS + HAY) = cov[(I−HA)YNS] + cov(HAY)

= (I−HA)Σ(I−HA)T + HAΣ(HA)T

= Σ−ΣAT (AΣAT )−1AΣ + ΣAT (AΣAT )−1AΣ

= Σ.

(4) It follows that E(YCS−Y)2 = cov(YCS−Y) = cov(YCS)− cov(YCS,Y)− cov(Y,YCS) +

cov(Y), which is 2[Σ−ΣAT (AΣAT )−1AΣ].
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