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Aerosols are tiny solid or liquid particles suspended in the atmosphere; examples of aerosols include windblown dust, sea salts, volcanic
ash, smoke from wildfires, and pollution from factories. The global distribution of aerosols is a topic of great interest in climate studies
since aerosols can either cool or warm the atmosphere depending on their location, type, and interaction with clouds. Aerosol concentrations
are important input components of global climate models, and it is crucial to accurately estimate aerosol concentrations from remote
sensing instruments so as to minimize errors “downstream” in climate models. Currently, space-based observations of aerosols are available
from two remote sensing instruments on board NASA’s Terra spacecraft: the Multiangle Imaging SpectroRadiometer (MISR), and the
MODerate-resolution Imaging Spectrometer (MODIS). These two instruments have complementary coverage, spatial support, and retrieval
characteristics, making it advantageous to combine information from both sources to make optimal inferences about global aerosol
distributions.

In this article, we predict the true aerosol process from two noisy and possibly biased datasets, and we also estimate the uncertainties
of these estimates. Our data-fusion methodology scales linearly and bears some resemblance to Fixed Rank Kriging (FRK), a variant of
kriging that is designed for spatial interpolation of a single, massive dataset. Our spatial statistical approach does not require assumptions
of stationarity or isotropy and, crucially, allows for change of spatial support. We compare our methodology to FRK and Bayesian melding,
and we show that ours has superior prediction standard errors compared to FRK and much faster computational speed compared to Bayesian
melding.
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1. INTRODUCTION

Scientific advances in the study of climate are accelerating at
a fast pace thanks in part to new technologies for collecting data
about Earth’s atmosphere, oceans, ice sheets, and land ecosys-
tems, and for computing estimates from these data. A prime
example is the emergence of remote sensing observations from
satellites as a vast, largely untapped resource for improving our
understanding of these complex, interacting geophysical pro-
cesses. One of the most important uses of these data is as input
to climate models to represent processes that are not understood
well enough to describe dynamically. In these cases, empirical
characterizations called “climatologies” are inputted into mod-
els instead of letting the models internally generate their own
estimates. The accuracies of climate predictions depend on the
availability of good climatologies describing behavior of key
variables and their uncertainties.

Among the variables that are important for accurate climate
simulations are atmospheric aerosol properties. An aerosol is
a suspension of fine solid particles or of liquid droplets in a
gas. In the atmosphere, they may arise from natural or anthro-
pogenic causes. Natural aerosols include sea salt, windblown
dust, and volcanic ash. Anthropogenic aerosols include smoke
and ash from land-clearing fires and pollutants from manu-
facturing. Aerosol climatologies provide information on where
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and when aerosols are injected into (sources) and removed from
(sinks) the atmosphere, and this is important because aerosols
affect the climate system in at least two ways. First, they can
create strong backscattering of solar radiation and absorb light,
cooling the planet. This is known as the aerosol direct effect and,
according to the Intergovernmental Panel on Climate Change
(IPCC), this cooling is about −0.7 W/m2, compared to the to-
tal global warming effect of 2.5 W/m2 (IPCC 2001). Second,
aerosols can catalyze the formation of clouds by providing con-
densation nuclei, thus warming the planet because clouds form
a blanket that holds heat in (Lohmann and Feichter 2005). This
is known as the aerosol indirect effect. The way these effects are
represented in climate models is a large source of uncertainty in
model simulations and predictions. It is crucial that information
on sources and sinks be accurate so that modelers can concen-
trate on the representation of transport and effects of aerosols
on other components of the climate system.

Two instruments on board NASA’s Terra satellite have been
collecting information about aerosols in the atmosphere since it
was launched into polar orbit in December 1999. The Multian-
gle Imaging SpectroRadiometer (MISR; Diner et al. 1998) and
the MODerate-resolution Imaging Spectrometer (MODIS; King
et al. 1992) both observe reflected solar radiation and use this
information to estimate the global distribution of aerosols. The
total amount of aerosol at any location and time is given by a
quantity called aerosol optical depth (AOD), which measures the
attenuation of solar energy passing through a column of atmo-
sphere from the top of atmosphere to the ground. AODs usually
range between 0 and 1; an AOD of less than 0.1 corresponds to a
crystal-clear scene with maximum visibility, while an AOD near
1 indicates very hazy conditions. AOD is measured at different
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Figure 1. MISR and MODIS AOD, January 1–16, 2001, over southern Africa. MISR footprints are at 17.6 km2 resolution, and MODIS
footprints are at 10 km2 resolution; for display purposes in the figure, both datasets are averaged to one-eighth degree resolution. White pixels
are those for which no reading is obtained from the instrument.

wavelengths, and here we use AOD at 0.55 µm (green band),
which is commonly used for aerosol climatologies.

Both instruments provide relatively high-resolution data on
aerosol amount and type, but they do so using different tech-
nologies and data-processing algorithms. MISR collects data in
four visible bands (blue, green, red, and near infrared) and from
nine different viewing angles along Terra’s ground track. With
its 300 km cross-track field of view, MISR provides complete
coverage of the Earth every 9 days on 17.6 km2 spatial regions
called footprints. MODIS provides measurements in 36 spec-
tral bands from a single-view angle at 10 km2 resolution and,
with its 1500 km cross-track field of view, MODIS has a global
coverage rate of about 2 days. Since they use different tech-
nologies and make different assumptions, the instruments have
different strengths and weaknesses that can be exploited. For
instance, MODIS generally has more complete coverage, but it
cannot see over bright surfaces such as deserts or glint over large
bodies of water. MISR generally has better measurement-error
characteristics (see Paradise et al. 2007). We seek to produce
better aerosol climatologies by combining data from the two
instruments in a way that capitalizes on their strengths; we call
our approach Spatial Statistical Data Fusion (SSDF).

1.1 Aerosols in Southern Africa

In this article, we examine MISR and MODIS AOD data in a
30◦ × 30◦ region of southern Africa, from 30◦S latitude to the
equator (0◦ latitude) and from the prime meridian (0◦ longti-
tude) to 30◦E longitude, observed from January 1–16, 2001 (see
Figure 1). We choose this area because it produces a lot of
aerosols due to agricultural land-clearing and its proximity to
the Sahara Desert. During this time of year, these aerosols are
transported southward and westward over the Atlantic ocean,
eventually reaching South America. Because these sources and
transport are to be injected into climate models, it is very im-
portant to accurately characterize AOD over this region.

Within this chosen spatio-temporal domain, Terra made three
overpasses; MISR acquired 9308 observations at 17.6 km2 res-
olution in the 30◦ × 30◦ region, and MODIS acquired 47,695
observations at 10 km2 resolution in the same region. The MISR

and MODIS footprints are approximately square areas oriented
along the direction of flight.

The maps of the raw data in Figure 1 illustrate the comple-
mentary coverage of the two instruments. MISR observations
are clearly grouped into three distinct stripes, which correspond
to the three orbital swaths MISR had over the domain between
January 1 and January 16, 2001. MODIS had much more com-
plete coverage of the domain due to its wider field of view,
but there are also significant gaps in the data. These are most
likely due to unfavorable atmospheric conditions causing radi-
ance data to be too unstable to be of use. Both maps in Figure 1
indicate that there is a general trend of high visibility in the
southern areas and low visibility near the northern edge of the
domain, where the nations Gabon, Congo, and the Democratic
Republic of Congo are found. Hazy conditions over this region
may result from windblown dust coming from the Sahara Desert
or land-clearing for agriculture.

1.2 Importance of Data Fusion

Differences in MISR and MODIS technologies, fields of
view, and retrieval algorithms lead to coverage differences that
can both be complementary and reinforcing. For instance, the
MODIS aerosol-retrieval algorithm does not operate over desert
or other bright land surfaces, while MISR’s does. MODIS also
has difficulty computing AOD in sun glint over dark water, while
MISR is able to do so because at least some of its view angles
will not be in glint at any given time. On the other hand, MODIS
has greater coverage due to its wider field of view. These com-
plementary characteristics produce a joint dataset that has more
complete coverage than either of the contributing datasets, and
a data-fusion methodology can take advantage of this to provide
more complete and accurate inferences over the domain. Where
the two instruments do observe simultaneously, their data can
reinforce each other’s if their measurement-error characteris-
tics are known and if differences in their spatial supports are
taken into account. The complementary strengths of MISR and
MODIS, coupled with substantial areas of simultaneous obser-
vations, make these instruments’ datasets ideal for data fusion.
In fact, they are frequently used in conjunction with one another
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(Kahn et al. 2009), but no formal statistical data fusion has been
done.

To exploit this synergy, any data-fusion methodology must
overcome two difficulties, namely, the massiveness of the remote
sensing data and their different footprints (spatial supports). Re-
mote sensing instruments typically collect tens of thousands of
observations per day. Considering that complete coverage of the
Earth may take several days or even weeks, these remote sens-
ing datasets are massive relative to the computational limitations
of existing spatial-smoothing methodologies, such as splines or
kriging. The second difficulty is that the datasets to be fused have
different spatial supports. Remote sensing instruments capture
and record the relevant process as an image, where each pixel,
also called a footprint, corresponds to some area in the domain.
These footprints differ in shape, size, orientation, and align-
ment, making it a challenge to estimate the underlying process.
If not dealt with properly, this change-of-support problem can
make inferences susceptible to the so called “ecological fal-
lacy”: erroneous conclusions can occur when inferences drawn
from aggregated data are assumed to apply to individual units
(e.g., Cressie 1996).

Gotway and Young (2002) gave a review of the change-of-
support problem, namely inferring a spatial process at one reso-
lution from data at another resolution. This formulation is closer
to addressing our problem, but their discussion and review of
existing methodologies focus on upscaling and downscaling
from a single dataset. Other contributions in the statistics litera-
ture include those by Wikle and Berliner (2005; single dataset,
Bayesian change of resolution), Fuentes and Raftery (2005;
combine observations and numerical-model output, Bayesian
melding), and Berrocal, Gelfand, and Holland (2010; areal-
level and point-level data, downscaling through Bayesian re-
gression). However, these approaches to data fusion are not
implementable for massive datasets, as their computational
complexities are quadratic or higher with respect to their data
size.

Recent spatial inferential methodologies that are scalable
include those by Nychka, Wikle, and Royle (2002; modeling
nonstationary covariance functions with multiresolutional
wavelet models), Banerjee et al. (2008; approximate optimal
prediction with dimension reduction through a small set of
space-filling locations), Stein and Jun (2008; modeling nonsta-
tionary covariance models using the discrete Fourier transform),
and Cressie and Johannesson (2008; Fixed Rank Kriging (FRK)
based on the Spatial Random Effects (SRE) model). Other ap-
proaches that are not strictly scalable, but can still handle large
spatial datasets, are approximations obtained by covariance ta-
pering (e.g., Furrer, Genton, and Nychka 2006) and from using
Gaussian Markov random fields (e.g., Lindgren, Rue, and
Lindström 2011).

In what follows, we leverage the computational efficiency
provided by FRK to solve the data-fusion problem when the
data sources are massive, as is often the case in remote sens-
ing. In Section 2, we briefly review the basic spatial-statistical
framework and the SRE model. In Section 3, we outline a data-
fusion methodology that builds upon FRK to resolve the issues
of massiveness and heterogeneous spatial support. We call this
Spatial Statistical Data Fusion (SSDF). In Section 4, we dis-

cuss the results of SSDF and compare its performance to FRK
and Bayesian melding. In Section 5, we discuss our findings
and possible extensions of SSDF to related problems. Finally,
parameter estimation is described in the Appendices.

2. THE SPATIAL STATISTICAL MODEL

Our data-fusion methodology exists within a geostatistical
framework, which is a part of the broader area of spatial statis-
tics. Here, we briefly review that framework, give some neces-
sary notation, and present basic derivations for estimation in a
spatial context. In particular, we discuss a parameterization of
the spatial covariance matrix through the SRE model (Cressie
and Johannesson 2008), which permits fast inversion of very
large covariance matrices.

Let {Y (s) : s ∈ D} be a hidden, real-valued spatial process on
a discretized domain. The domain of interest is ∪{Ai ⊂ 'd :
i = 1, . . . , ND}, which is made up of ND fine-scale, nonover-
lapping, areal regions {Ai} with locations D ≡ {pi ∈ Ai : i =
1, . . . , ND}. We call these fine-scale regions the Basic Areal
Units (BAUs), and they represent the smallest resolution at
which we will make predictions with our model. In the re-
mote sensing context, the choice of BAUs is natural and often
determined by the smallest resolution required by the scientific
problems for which the predicted field will be used. Moreover,
the SRE model that we shall use below has a form that is in-
variant to the choice of BAUs.

For the moment, consider just one instrument. Let Z be
a vector of observations at N footprints {B1, . . . , BN } ⊂ 'd ,
where a generic footprint B is made up of BAUs with lo-
cations indexed by D ∩ B. We assume that each element of
Z ≡ (Z(B1), . . . , Z(BN ))′ is generated as an average of Y (·)
plus an independent error term, ε(·); that is, at both, where Y (·)
is observed and at potential footprints,

Z(B) = 1
|D ∩ B|

{
∑

s∈D∩B

Y (s)

}

+ ε(B); B ⊂ 'd . (1)

The measurement-error term ε(B) may have nonzero mean that
captures the instrument bias, and it has measurement-error vari-
ance σ 2

ε v(B) > 0, where v(·) is assumed known and allows for
the possibility of nonconstant variance over the domain D. For
instance, if we know quantitatively how certain observations
have higher measurement errors relative to surrounding regions
due to unfavorable atmospheric conditions, we can construct
the appropriate function v(·) to reflect the varying measurement
errors. Finally, ε(Bi) and ε(Bj ) are assumed independent, for
i += j .

The true process, Y (·), is assumed to have a linear mean
structure:

Y (s) = t(s)′α + ν(s) + ξ (s); s ∈ D, (2)

where notice that it is defined on the BAUs, which are in-
dexed by D. The first term on the right-hand side of Equa-
tion (2) accounts for an assumed linear model in the trend, where
t(·) ≡ (t1(·), . . . , tp(·))′ is a vector of p known covariates, such as
geographical coordinates or other physical variables. The vec-
tor of linear coefficients, α, is unknown. The middle term, ν(·),
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captures the spatial covariance and is assumed to have mean
zero and finite, possibly heteroscedastic variance. The last term,
ξ (·), describes the variability of the process at the scale of the
BAU. We assume that ξ (·) is an independent Gaussian process
with mean zero and variance σ 2

ξ . The spatial covariance function
for Equation (2) is,

cov(Y (u), Y (v)) = cov(ν(u) + ξ (u), ν(v) + ξ (v))
= C(u, v) + σ 2

ξ I (u = v); u, v ∈ D. (3)

Combining Equations (1) and (2), we have the following
general linear model:

Z = Y + ε,

Y = Tα + ν + ξ ,

where ε, ν, and ξ are random vectors of length N representing the
corresponding processes evaluated at the observation footprints,
B1, . . . , BN . Further, T is an N × p matrix of the covariates,
(t(B1), . . . , t(BN ))′, where t(B) ≡

∑
s∈D∩B t(s)/|D ∩ B| is a p-

dimensional vector; and ε, ν, and ξ are statistically independent.
It is shown below that the covariance matrix % ≡ var(Z) is given
by,

% = [cov(Z(Bi), Z(Bj ))] = %Y + σ 2
ξ E + σ 2

ε V. (4)

In Equation (4), the N × N covariance matrices on the right-
hand side are defined by %Y ≡ [C(Bi, Bj )], E ≡ [ |D∩Bi∩Bj |

|D∩Bi ||D∩Bj | ],
and V ≡ diag(v(B1), . . . , v(BN )), where the latter is a known
diagonal matrix. The covariance function C(Bi, Bj ) can be ex-
panded in terms of the BAU covariances,

C(Bi, Bj ) = 1
|D ∩ Bi ||D ∩ Bj |

∑

u∈D∩Bi

∑

v∈D∩Bj

C(u, v).

We are interested in inferring the “true” process, Y (·), at all
locations s0 ∈ D (i.e., at the BAU level of resolution).

Kriging yields the best linear unbiased predictor, Ŷ (s0) = a′Z,
but the methodology requires inversion of the N × N covari-
ance matrix, %. This inversion can be a computational bot-
tleneck for large-to-massive datasets. Cressie and Johannesson
(2006, 2008) developed a flexible, nonstationary spatial statis-
tical model that resolves the computational bottleneck (see also
Shi and Cressie 2007). They express the spatial covariance term,
ν(s), in Equation (2) as the product of an r-dimensional vector of
known spatial basis functions, S(s), and an r-dimensional Gaus-
sian random variable, η, with var(η) = K. That is, ν(s) = S(s)′η.
Consequently, the process model in Equation (2) can be written
as the linear mixed model,

Y (s) = t(s)′α + S(s)′η + ξ (s). (5)

Cressie and Johannesson (2008) call the model for the stochastic
part,

S(·)′η + ξ (·), (6)

the SRE model; and they call the model given by Equation (5)
the Spatial Mixed Effects (SME) model.

The model given by Equation (5), substituted into Equa-
tion (1), has remarkable change-of-support properties; observe

that the covariance between two footprints is,

cov(Z(Bi), Z(Bj )) = cov



 1
|D ∩ Bi |





∑

u∈D∩Bi

Y (u)




+ ε(Bi),

× 1
|D ∩ Bj |





∑

v∈D∩Bj

Y (v)




+ ε(Bj )



.

Because ξ (·) and ε(·) are independent of each other and of η,
we obtain,

cov(Z(Bi), Z(Bj ))

= 1
|D ∩ Bi |

1
|D ∩ Bj |

∑

u∈D∩Bi

∑

v∈D∩Bj

cov (Y (u), Y (v))

= 1
|D ∩ Bi |

1
|D ∩ Bj |

∑

u∈D∩Bi

∑

v∈D∩Bj

{
S(u)′KS(v)

+ σ 2
ξ I (u = v)

}
+ σ 2

ε I (i = j )v(Bi)

= S(Bi)′KS(Bj ) + σ 2
ξ

|D ∩ Bi ∩ Bj |
|D ∩ Bi ||D ∩ Bj |

+ σ 2
ε I (i = j )v(Bi), (7)

where the last two terms in Equation (7) have been defined in
Equation (4), and

S(Bi) ≡ 1
|D ∩ Bi |

∑

u∈D∩Bi

S(u).

In a similar manner, we can show that,

cov(Z(Bi), Y (s0)) = S(Bi)′KS(s0) + cov(ξ (Bi), ξ (s0)), (8)

where cov(ξ (Bi), ξ (s0)) = σ 2
ξ

I (s0∈Bi )
|D∩Bi | . Notice that Equation (7)

allows us to express the covariance between spatial averages ex-
plicitly in terms of the covariance parameter K, which is defined
at the BAU level through Equation (6). When K is unknown,
its estimation proceeds straightforwardly from aggregated data
(Cressie and Johannesson 2008).

The result in Equation (7) leads to the specialization of Equa-
tion (4) to:

% = S′KS + σ 2
ξ E + σ 2

ε V, (9)

where S ≡ (S(B1), . . . , S(BN ))′. Using the Sherman-Morrison-
Woodbury formula (e.g., Henderson and Searle 1981), the ma-
trix inverse is given by,

%−1 = U−1 − U−1S′ (K−1 + SU−1S′)−1
SU−1, (10)

where U ≡ σ 2
ξ E + σ 2

ε V. The inversion is exact for any covari-
ance function C(·, ·) obtained from the class of SRE models
given by Equation (6). The procedure requires inversion of the
N × N matrix U, which is typically very sparse, and inversion
of K and (K−1 + S′U−1S), both of which are r × r matrices
(r , N ).

For diagonal U, the computational burden of inverting % is
dominated by inversions of r × r matrices (O(r3)) and dense
matrix multiplications (O(Nr2)). Since N - r , the number of
computations required to invert % is O(Nr2) (Cressie and Jo-
hannesson 2008), and hence for fixed r the number of compu-
tations required to invert % grows only linearly with the data
size N. In our case, U is not diagonal but it is sparse. If there
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Figure 2. Top row: histograms of MISR and MODIS AOD. Bottom row: histograms of log-transformed MISR and MODIS AOD.

are very few overlaps between the footprints, the matrix U is
very sparse and can be inverted with sparse-matrix techniques.
If U is too dense for inversion with sparse-matrix techniques,
the matrix E may be approximated with an SRE model, and the
computational efficiency of the Sherman-Morrison-Woodbury
formula may again be leveraged. In summary, the combination
of a fixed-rank, positive-definite matrix K, and a set of spa-
tial basis functions, {Sj (·) : j = 1, . . . , r}, produces a flexible,
nonstationary family of covariance functions that allows rapid
computation of the covariance matrix of a single spatial dataset
Z and hence rapid computation of {Ŷ (s0) : s0 ∈ D}.

In the remainder of this section, we apply the parameterization
described above to aerosol data in southern Africa. We first
discretized the 30◦ × 30◦ domain into a fine-scale grid of regular
hexagons using the Discrete Global Grid software (Carr et al.
1998). Specifically, we used resolution 17 of the ISEA Aperture
3 Hexagon (ISEA3H) global grid, with intercell distance of
0.675 km and cell area of 0.395 km2. These hexagons are defined
to be the BAUs, {Ai : i = 1, . . . , ND}, whose centers define the
index set D. The covariates t(·) were constructed using the three-
dimensional vector made up of unity, latitude, and longitude.

Histograms of MISR and MODIS AOD are displayed in the
top row of panels in Figure 2. Both histograms exhibit long
tails on the right, indicating that visibility in the domain is
mostly clear and that hazy conditions are relatively rare. Since
we assumed in the models given above that the data are normally
distributed, we took the log of both MISR and MODIS AOD to

ensure that the normality assumption is (at least approximately)
met. The histograms of the log-transformed AOD for MISR and
MODIS are shown in the bottom row of panels in Figure 2.
An important feature of the log-transform is that it ensures our
predictions will be positive. AODs typically range between 0 and
1, and applying our data-fusion methodology to nontransformed
data may lead to negative AOD, which would be inappropriate.
In what follows, we apply our methodology on all the log-
transformed AOD values (essentially assuming that the AOD
data is lognormal), and then we transform the predictions back
into AOD for interpretation.

We used t(·) to detrend the raw data as described in Ap-
pendix A. The covariance parameters were estimated from the
combined dataset consisting of Z1 and Z2 (see the Appendices).
To construct S(·), we used local bisquare functions at b0 resolu-
tions:

fa(b)(u) =






(
1 − ||u − ma(b)||2

d2
b

)2

for ||u − ma(b)|| ≤ db,

0 otherwise,

where u, ma(b) ∈ 'd ; ma(b) is the ath center point at the bth res-
olution for b = 1, 2, . . . , b0; and || · || denotes Euclidean dis-
tance. Note that ma(b) denotes a center location for a set of basis
functions in the bth resolution, and db is defined as 1.5 times the
shortest distance between two such center points (Cressie and
Johannesson 2008).
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Figure 3. Left panel: bisquare basis function centers at four resolutions (Resolution-1 centers are in red, Resolution-2 centers are in green,
Resolution-3 centers are in blue, and Resolution-4 centers are in teal). Right panel: Bin centers (blue dots) of the 1◦ × 1◦ bins. The online version
of this figure is in color.

We employed a quadtree design with b0 = 4 resolutions for
construction of S(·). The four spatial basis functions at reso-
lution 1 are defined relative to the four coarsest centers, which
are spread evenly over the domain. The next 16 basis functions
are defined relative to each of 16 evenly spaced centers at
Resolution 2. We repeated the procedure twice more, for a total
of 4 + 16 + 64 + 256 = 340 basis functions. The four resolu-
tions of bisquare-basis function centers are displayed in the left
panel of Figure 3, and the 900 1◦ × 1◦ bins used for calculating
the empirical covariance functions are displayed in the right
panel of Figure 3. Having introduced and parameterized the
geostatistical estimation framework in the single-dataset case,
we describe the data-fusion methodology in the next section.

3. SPATIAL STATISTICAL DATA FUSION (SSDF)

In data fusion, we are interested in optimally estimating an un-
derlying process, Y (·), from two (or more) realizations, Z1 and
Z2. In this section, we derive the best linear unbiased predictor
for the process Y (·). We start with model definitions and prop-
erties (Section 3.1), and we derive the general optimal predictor
without assuming any specific model for the covariance struc-
ture (Section 3.2). We then assume that the covariance structure
is determined by an SRE model, and we show how the resulting
optimal predictor is suitable for massive and spatially incom-
patible data (Section 3.3). Finally, in Section 3.4, we apply our
data-fusion methodology to the AOD data from southern Africa,
introduced in Section 2.

3.1 Data Model and Properties

Assume an underlying true process Y (·) defined at the BAU
level and two datasets (e.g., from two instruments), Z1 and Z2,
observed at different spatial supports, both larger than the BAUs
that define D. As in Equation (1), assume that the data vectors,
{Zk : k = 1, 2}, are generated as spatial averages over a set of

footprints according to the following model:

Zk(Bkm) = 1
|D ∩ Bkm|





∑

u∈D∩Bkm

Y (u)




+ εk(Bkm);

Bkm ⊂ 'd , (11)

where Bkm represents the mth footprint in dataset k, the common
process Y (·) is given by Equation (2), and εk(Bkm) is a Gaussian
error process associated with the measurement for footprint Bkm;
m = 1, . . . , Nk , k = 1, 2.

In vector notation, Zk , the data vector for dataset k may be
written as,

Zk = Yk + εk, (12)
Yk = Tkα + νk + ξ k; k = 1, 2,

where εk, νk , and ξ k are, respectively, the measurement-error,
the smooth-spatial variation, and the fine-scale variation pro-
cesses evaluated at the footprints in dataset k. The covariance
between the kth and lth data vectors, %kl , is given as

%kl ≡ cov(Zk, Zl) = cov(νk, ν l) + σ 2
ξ Ekl + σ 2

ε I (k = l)Vk;
k, l = 1, 2,

where Ekl = [ |D∩Bka∩Blb|
|D∩Bka ||D∩Blb| ] is a matrix where the (a, b) element

is the number of BAUs in the intersection between the two
footprints Bka and Blb, divided by the product of the number of
BAUs in the two footprints, and Vk is a known diagonal matrix
associated with the measurement-error process for dataset k.
Similarly, the covariance between dataset Zk and the process
Y (·) at location s is,

cov(Zk, Y (s)) ≡ cov(νk, ν(s)) + bk(s),

where

bk(s) ≡ cov(ξ k, ξ (s)) = σ 2
ξ

(
I (s ∈ Bk1)
|D ∩ Bk1|

, . . . ,
I (s ∈ BkNk

)
|D ∩ BkNk

|

)′
;

k = 1, 2. (13)
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As we mentioned for the model in Equation (1), we allow for
the possibility of systematic instrument bias. Suppose that the
trend of Y (·) is linear in spatial covariates, that is, E(Y (s)) =
t(s)′α, for s ∈ D. Then Y (B) has expectation given by t(B)′α,
where B is a generic footprint and the definition of t(B) is
given below Equation (3). Now suppose that the bias is captured
multiplicatively, as follows:

E(εk(Bkm)) = ckE(Y (Bkm)) = ckt(Bkm)′α.

Consequently,

E(Z(Bkm)) = (1 + ck) t(Bkm)′α; m = 1, . . . , Nk, k = 1, 2.

(14)

That is, the data are biased, and we call the parameters {ck : k =
1, 2} the bias coefficients. These multiplicative bias coefficients
will be obtained off-line, either from instrument specifications
or from comparison with independent, unbiased data sources.
Finally, the measurement-error variances are given by

var(εk(Bkm)) = σ 2
ε,kvk(Bkm); m = 1, . . . , Nk,

where for k = 1, 2, vk(Bkm) is known.

3.2 SSDF Predictors

The data-fusion predictor proposed below is a linear combi-
nation of Z1 and Z2. We solve for the optimal set of data-fusion
coefficients, a1s and a2s, that minimize the mean squared pre-
diction error (MSPE) of the estimator at location s. Without
assuming a specific model for the covariance structure C(·, ·),
let the estimator be written as

Ŷ (s) ≡ a′
1sZ1 + a′

2sZ2. (15)

Then, subject to an unbiasedness constraint, we minimize

E(Y (s) − Ŷ (s))
2 = var(a′

1sZ1 + a′
2sZ2 − Y (s)),

= a′
1svar(Z1)a1s + a′

2svar(Z2)a2s + var(Y (s))
+ 2a′

1scov(Z1, Z2)a2s − 2a′
1scov(Z1, Y (s))

− 2a′
2scov(Z2, Y (s)). (16)

Formally, the unbiasedness constraint is,

E(Y (s)) = t(s)′α = E(a′
1sZ1 + a′

2sZ2) = E(Ŷ (s)),

uniformly in α. Under the multiplicative-bias assumption given
by Equation (14), this becomes,

t(s)′ = (1 + c1)a′
1sT1 + (1 + c2)a′

2sT2,

where Tk = (t(Bk1), . . . , t(BkNk
))′; k = 1, 2.

The solution to the minimization problem in Equation (16)
can be simplified by considering an alternative formulation of
our problem. Given the data vectors Z1 and Z2, we can stack
them to form the following model,

(
Z1

Z2

)
=
(

T1

T2

)
α +

(
ν1

ν2

)
+
(

ξ 1
ξ 2

)
+
(

ε1

ε2

)
, (17)

or equivalently,

ZF = TF α + νF + ξF + εF , (18)

where ZF , TF , νF , ξF , and εF each denotes the stacked version
of the corresponding vector. From Equation (17), we can see

that var(ZF ) and cov(ZF , Y (s)) are

var(ZF )≡
(

%11 %12

%21 %22

)
, cov(ZF , Y (s))≡

(
cov(Z1, Y (s))
cov(Z2, Y (s))

)
.

(19)

Under this formulation, the linear interpolator in Equa-
tion (15) can be written as

Ŷ (s) = a′
F ZF , (20)

where a′
F ≡ (a′

1s, a′
2s) is an (N1 + N2)-dimensional vector of

data-fusion coefficients. Then, subject to an unbiasedness con-
straint, we minimize,

E(Y (s) − Ŷ (s))
2 = var(Y (s) − a′

F ZF ),
= var(Y (s)) − 2a′

F cov(ZF , Y (s))
+ a′

F var(ZF ) aF , (21)

with respect to aF , where the unbiasedness constraint is p-
dimensional:

0 = a′
F CTF − t(s)′, (22)

and C is the following (N1 + N2) × (N1 + N2) diagonal matrix,

C ≡
(

(1 + c1)IN1 0
0 (1 + c2)IN2

)

.

To simplify notation, let %F ≡ var(ZF ) and cF ≡
cov(ZF , Y (s)). Then, using Lagrange multipliers to minimize
Equation (21) subject to Equation (22), the objective func-
tion to minimize with respect to the coefficients aF and the
p-dimensional vector of Lagrange multipliers m is

M ≡ C(s, s) + σ 2
ξ − 2a′

F cF + a′
F var(ZF )aF

+ (a′
F CTF − t(s)′)m.

Upon differentiating M with respect to aF and m, and setting
the results equal to zero, we have

( 2c′
F t(s)′ ) = ( a′

F m′ )

(
2 %F C T
T′C 0

)

. (23)

We can solve for a′
F and m′ by inverting the matrix on the right-

hand side of Equation (23) using block inversion. The solutions
are

a′
F =

(
c′
F +

(
t(s)′−c′

F %−1
F CTF

)(
T′

F C%−1
F CTF

)−1T′
F C
)
%−1

F ,

(24)

and

m′ =
(
t(s)′ − c′

F %−1
F CTF

)(
T′

F C%−1
F CTF

)−1
. (25)

Having derived the data-fusion coefficients aF , we can produce
the SSDF prediction and its prediction standard error at s ∈ D,
as follows,

Y (s)SSDF ≡ a′
F ZF

σ (s)SSDF ≡
(
C(s, s) + σ 2

ξ − 2a′
F cF + a′

F %F aF

) 1
2 , (26)

where aF is given by Equation (24). Note that while Equa-
tion (26) produces predictions at the BAU level, it can be easily
modified to produce predictions over larger areal regions (e.g.,
Cressie 1993, p. 124).

D
ow

nl
oa

de
d 

by
 [A

m
y 

J. 
B

ra
ve

rm
an

] a
t 0

6:
05

 1
1 

O
ct

ob
er

 2
01

2 
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There are two practical problems with this general predictor.
The first is that we need to invert the (N1 + N2) × (N1 + N2)
matrix %F in Equation (24), which can cause a computational
bottleneck for large (N1 + N2). The second is that for most
covariance models C(·, ·), estimating the model parameters from
data with different spatial supports is a nontrivial task. In the
next section, we use the SRE model to address these problems.
Estimation of the SSDF parameters is discussed in Appendix A,
and empirical estimates of the covariance and cross-covariance
matrices are discussed in Appendix B.

3.3 Prediction Equations Under the SRE Model

The SRE model described in Section 2 allows us to express
covariances between spatial averages explicitly in terms of its
covariance parameter K. By modeling the covariance function
C(·, ·) with that implied by the SRE model given by Equa-
tion (6), we not only solve the change-of-support problem, but
also make the procedure computationally scalable. Under this
model, the data can be written as

(
Z1

Z2

)
=
(

T1

T2

)
α +

(
S′

1

S′
2

)

η +
(

ξ 1
ξ 2

)
+
(

ε1

ε2

)
, (27)

where Sk ≡ (S(Bk1), . . . , S(BkNk
))′, η is an r-dimensional Gaus-

sian random variable with var(η) = K, and r , min(N1, N2) is
fixed. From Equation (27), we can see that under the assumption
of a multiplicative bias in the observed dataset, E(ZF ) = CTF α
and var(ZF ) can be written as

var(ZF ) ≡ %F = S′
F KSF + σ 2

ξ EF + VF , (28)

where S′
F ≡ (S1, S2)′,

EF ≡
(

E11 E12

E21 E22

)
, and VF ≡

(
σ 2

ε,1V1 0

0 σ 2
ε,2V2

)

.

Notice that K, σ 2
ξ , and {σ 2

ε,k : k = 1, 2} are the spatial-
covariance parameters to be estimated. Similarly, we can see
that for s, u ∈ D,

var(Y (s)) ≡ S(s)′KS(s) + σ 2
ξ , (29)

cov(Y (s), Y (u)) ≡ S(s)′KS(u); s += u, (30)

and

cF ≡ cov(ZF , Y (s)) = S′
F KS(s) + bF (s), (31)

where bF (s) ≡ (b1(s)′, b2(s)′)′, and {bk(·) : k = 1, 2} were de-
fined in Equation (13).

We can now rewrite the SSDF predictor and prediction stan-
dard error given by Equation (26) in terms of the covariances
implied by the SRE model given by Equation (6). For s ∈ D,

Y (s)SSDF = a′
F ZF , (32)

σ (s)SSDF =
(
S(s)′KS(s) + σ 2

ξ − 2a′
F

(
S′

F KS(s) + bF (s)
)

+ a′
F

(
S′

F KSF + σ 2
ξ EF + VF

)
aF

) 1
2 . (33)

The expression for the data-fusion coefficients aF will be the
same as Equation (24), with the exception that we can now
compute %−1

F using the Sherman-Morrison-Woodbury formula
given by Equation (10), as described in Section 2. Specifically,

%−1
F = U−1

F − U−1
F S′

F

(
K−1 + SF U−1

F S′
F

)−1
SF U−1

F ,

where UF ≡ σ 2
ξ EF + VF . As for the single-instrument case, the

inversion of the covariance matrix %F only requires inversion
of UF , K, and (K−1 + SF U−1

F S′
F ); the latter two are fixed-rank

r × r matrices.

3.4 Application to Aerosol Data in Southern Africa

To apply SSDF, we need to estimate the bias coefficients,
c1 and c2, and the SSDF parameters K, σ 2

ξ , σ 2
ε,1, and σ 2

ε,2. Par-
adise et al. (2007) estimated the multiplicative bias coefficients
for MISR and MODIS AOD as c1 = 0.08 and c2 = 0.22, re-
spectively. Since these are multiplicative biases, they convert
to simple additive biases of log(1 + c1) and log(1 + c2) for the
log-transformed MISR and MODIS AOD. We assume that the
log-transformed AOD data have these additive biases and no
multiplicative bias. We then removed the additive biases by
subtracting them from the log-transformed data before apply-
ing SSDF. Using the individual semivariograms at lags 10, 20,
30, and 40 km, and the cross-variogram at lag 10 km (see Ap-
pendix A), we obtained estimates for the variability parameters:
σ̂ 2

ξ = 8.25, σ̂ 2
ε,1 = 0.26 for MISR, and σ̂ 2

ε,2 = 0.43 for MODIS
(we assumed that all observations within a given dataset have
the same measurement-error variability, so we let vk(·) = 1).

We estimated K using a binned method-of-moments estima-
tor (see the Appendices). Following Cressie and Johannesson
(2008), we computed a diagnostic summary of the SSDF pa-
rameter estimates by comparing theoretical semivariograms to
empirical semivariograms as functions of spatial lag. Figure 4
shows comparisons of theoretical and empirical semivariograms
at four locations in D. Specifically, we computed the empirical
semivariogram, as a function of spatial lag, using all MODIS
data within 300 km of a given location. We chose to use MODIS
data because MODIS has much better coverage of the domain.
The theoretical semivariograms at corresponding spatial lags
were computed by averaging the values implied by Equation (8).
The good fit of the theoretical semivariograms to the empirical
semivariograms in Figure 4 indicates that the fitted SSDF model
fits the data well.

4. RESULTS AND COMPARISONS

In this section, we apply SSDF to optimally estimate AOD in
a 30◦ × 30◦ region of southern Africa. We compare the SSDF
predictions to FRK predictions in Section 4.1, and we compare
SSDF to Bayesian melding (Fuentes and Raftery 2005) in terms
of computing time and predictive performance in Section 4.2.

4.1 SSDF and FRK Predictions

Having estimated the SSDF parameters in Section 3.3, we
solved for the optimal SSDF predictors and their prediction
standard errors at each prediction location, as given by Equa-
tion (26). We overlaid a 300 × 300 regular grid over the domain,
and we used the resulting 90,000 grid cells as our prediction lo-
cations. Each grid cell is a 0.1◦ × 0.1◦ region, and this is the
spatial support of the AOD to be predicted.

For comparison, we did optimal prediction based on the MISR
and MODIS data individually. Note that the SSDF formulas can
be adapted to optimally predict the process Y (·) from a single
dataset, Z, without any major modification. We can simply re-
place the stacked terms with the corresponding single-dataset
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Figure 4. Comparison of empirical semivariograms versus estimated semivariograms as functions of distance at four locations in D. Solid
circles indicate robust semivariogram estimates, and white squares denote semivariogram estimates derived from the SRE model.

elements (e.g., ZF = Z, SF = S, etc.), and the prediction and
prediction standard error in Equations (32) and (33), respec-
tively, remain the same. In its single-dataset form, SSDF is
essentially FRK (Cressie and Johannesson 2008).

Since we are interested in the comparison of predic-
tion properties, we used the same estimates of K, σ 2

ξ , and
{σ 2

ε,k : k = 1, 2} in the three predictors, which are derived from
the combined dataset of Z1 and Z2 (see Appendices). Having
computed the predictions using log-transformed AOD data,
we transformed them back onto the AOD scale (see, e.g.,
Cressie 1993, p. 135). The top row of panels in Figure 5 shows
the individual-dataset FRK predictors (left and center), and the
SSDF predictor (right). The corresponding root mean squared
prediction errors (RMSPE; i.e., prediction standard errors) are
shown in the bottom row of panels.

The patterns of prediction standard errors from individual-
dataset FRKs look like the respective patterns of the data density.
This makes sense intuitively, because we expect to have small
prediction standard errors for locations with many nearby obser-
vations and large prediction standard errors for locations with
very few nearby observations. The FRK map based on MISR
has large parts of the region with large prediction standard errors
due to its incomplete coverage. Since we assumed that AOD is
log-normal, the prediction standard errors are proportional to the
underlying trend, which translates into smaller prediction stan-

dard errors in the southern areas and larger prediction standard
errors in the northern areas.

The SSDF prediction map (top, right panel) looks very simi-
lar to that of the MODIS map, because MODIS has much denser
and more complete coverage. However, there are a few notice-
able differences between the two in areas where SSDF is able
to capitalize on complementary information from MISR to im-
prove the prediction. One example of this is the region of low
visibility off the coast of Angola between −12◦ and −18◦ lati-
tude, and 3◦ and 10◦ longitude. These hazy conditions are due to
aerosols blown from inland areas; however, MODIS has sparse
coverage of this region due to unfavorable atmospheric condi-
tions. MODIS FRK reports relatively high prediction standard
errors within this region, compared to nearby observed loca-
tions. MISR has some coverage in this area and SSDF takes
advantage of this complementary coverage to achieve lower
prediction standard errors there.

Another example of improvement through SSDF is in south-
ern Namibia, between latitudes −30◦ and −20◦, and longitudes
10◦ and 20◦. MODIS has missing data in this region, and the
observational pattern in the right panel of Figure 1 seems to
suggest that MODIS has difficulty making retrievals of AOD
in the transition between land and ocean. MISR, on the other
hand, has good coverage of coastal areas. Over the coast of
Namibia, the retrieved MODIS AODs around the missing-data
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Figure 5. Predictions of AOD (top row of panels) and prediction standard errors of AOD (bottom row of panels) produced by applying FRK
to MISR data (left panels) and to MODIS data (center panels), and by applying SSDF to MISR and MODIS data together (right panels).

region suggest medium values of AOD. However, the MISR
data indicate that the Namibia coast has mostly good visibil-
ity with low aerosol content in the atmosphere. Looking at the
MODIS FRK map alone, one might conclude that there are some
medium aerosol plumes in the atmosphere above Namibia, but
these plumes are likely spurious due to the sparse data cov-
erage and instrument instability in the transition between land
and ocean. SSDF is able to use the good coverage of MISR
to show that the sky around Namibia has mostly low aerosol
content. In summary, we would have missed certain aspects of
AOD distribution over the domain if it were not for data fusion;
aerosol climatologies constructed from SSDF benefit from the
two instruments in a way that capitalizes on their strengths, and
they are more accurate representations of the underlying AOD
process.

One quantitative measure of improvement afforded by SSDF
prediction is the ratio of SSDF prediction standard errors to indi-
vidual FRK prediction standard errors. Figure 6 shows two such
histograms: One is of {σ SSDF(sj )/σ FRK

MISR(sj )}, and the other is of
{σ SSDF(sj )/σ FRK

MODIS(sj )}, where the index in the sequences runs
from j = 1, . . . , NP , the number of prediction locations. Both
histograms have an upper limit of 1, indicating that SSDF pre-
diction standard errors, in all instances, are smaller than predic-
tion standard errors produced from both single-dataset optimal
predictions. The improvement due to our optimal data-fusion
methodology is often remarkable, particularly in comparison to
MISR FRK (due to MISR’s lower sampling rate).

It is not surprising that SSDF produces more precise esti-
mates than are produced by applying optimal spatial statistical
prediction (i.e., FRK) to the input datasets separately. In ef-
fect, SSDF combines the two data sources into a single meta-
dataset and uses more information. To see this, the SSDF and
the single-dataset predictors can be written as an optimization
of the estimates:

YSSDF(s) = a′
1Z1 + a′

2Z2, subject to (1 + c1)a′
1T1

+ (1 + c2)a′
2T2 = t(s)′,

YMISR(s) = a′
1Z1 + 0′Z2, subject to (1 + c1)a′

1T1 = t(s)′,
YMODIS(s) = 0′Z1 + a′

2Z2, subject to (1 + c2)a′
2T2 = t(s)′.

The MISR FRK predictor has optimal MSPE over the unbiased
space spanned by (a1, 0), while the MODIS FRK predictor has
optimal MSPE over the unbiased space spanned by (0, a2). The
SSDF predictor, by definition, has minimum MSPE over the
larger unbiased space spanned by (a1, a2). Thus, SSDF offers
superior performance with respect to MSPE when compared to
nonfused individual unbiased spatial prediction.

4.2 SSDF Versus Bayesian Melding

The analysis in the previous section shows that SSDF has
lower prediction standard errors than the single-dataset FRKs.
We now consider how the SSDF methodology compares to al-
ternative data-fusion methodologies. To gain some insight into
the relative performance and efficiency, we compared SSDF to
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Figure 6. Histograms of prediction–standard error ratios. Left panel: SSDF compared to MISR. Right panel: SSDF compared to MODIS.

Bayesian melding (Fuentes and Raftery 2005). While Bayesian
melding is presented in the context of combining pollution mea-
surements from observation stations with outputs from numeri-
cal pollution models, the methodology can be adapted to make
optimal prediction of a single process using outputs from two
instruments.

Bayesian melding models the process locally, as a station-
ary isotropic random field with three parameters (smoothness,
sill, and range) that describe the local spatial structure. These
parameters are assumed to have known prior distributions, and
they are allowed to vary across the domain. Spatial prediction
at any given location is obtained by sampling from the process’
posterior distribution. However, as will become apparent below,
the methodology is not designed for very large datasets such as
the one in this study, so we applied it to a suitably small random
subset of the AOD data in southern Africa.

For our comparison exercise, we created random subsets of
the MISR and MODIS AOD data, each of which is one-fortieth
of the original data size. The subsets of MISR and MODIS
AOD data have sizes of 1192 and 232, respectively, and they
are shown in Figure 7. To divide the datasets into training and

test data, we designated a region of Namibia between −28◦ and
−20◦ latitude and between 14◦ and 19◦ longitude as a reserved
region (see Figure 7). We chose this region because it has good
coverage from both MISR and MODIS. The data outside of this
reserved region are used as training data for Bayesian melding,
and the data inside the region (35 MISR observations and 43
MODIS observations) are withheld and used for comparison
between SSDF and Bayesian-melding predictions. Since the
SSDF methodology requires large datasets for stable parameter
estimates, the SSDF training dataset consisted of the full AOD
datasets minus any data from the reserved region. Hence, the
two training datasets are not quite the same due to the unique
requirements of the two methodologies, but a comparison of
their predictive performance over the reserved region gives a
direct comparison of their spatial-prediction efficiencies.

We applied both SSDF and Bayesian melding to log-
transformed AOD data, and we compared the predictive per-
formance on the log-transformed AOD scale, where errors and
biases are additive. (Notice that we add MISR and MODIS bi-
ases back onto the predictions to allow a proper comparison to
the testing data in the reserved region.)

Figure 7. Subsets of MISR and MODIS AOD used for Bayesian melding. The red rectangles indicate the reserved region from which we
withheld data for testing. The online version of this figure is in color.
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Figure 8. Top panel: test residuals for Bayesian melding. Bottom
panel: test residuals for SSDF. The residuals are on the log-transformed
AOD scale, and the empirical root mean squared prediction error
(RMSPE) is shown on the upper left of each panel.

In applying Bayesian melding to the log-transformed AOD
data, we removed the additive biases. Following Fuentes and
Raftery (2005), we assumed that the process has a Matérn sta-
tionary covariance function. We used gamma priors for the range
and smoothness parameter. For the smoothness parameter, the
prior mean was 0.05 and the variance 1, and for the range pa-
rameter the prior mean was 400 km and the standard deviation
was 50 km. For the sill parameter, ς , the prior was p(ς ) ∝ ς−1,
which is an improper uniform distribution on log(ς ). As with
SSDF, we added the MISR and MODIS log-transformed addi-
tive biases back onto the Bayesian-melding predictions before
comparing to the testing data in the reserved region.

For each of the two methodologies, we grouped the test resid-
uals for both MISR and MODIS into a single vector. Figure 8
displays the histograms of the combined test residuals for both
SSDF and Bayesian melding. Bayesian melding has an empir-
ical RMSPE of 0.829, and SSDF has a corresponding value of
0.795, which is about 4% smaller. Note that this exercise com-
pares model outputs against withheld data (Z) instead of the
truth (Y), so the test residuals reflect variability due to mea-
surement errors as well. It seems that Bayesian melding is able
to achieve almost the same predictive performance as that of
SSDF. We now compare the computational complexity of the
two methodologies.

As expected from the discussion in Section 2, the SSDF
algorithm is very fast, taking about 48 sec to process a combined

dataset of about 50,000 observations on a 3.06 GHz machine
with an Intel Dual Core processor. About 93% of that time
(45 sec) was spent constructing the input matrices {Sk} (about
9 sec), E (about 30 sec), and estimating the parameters K, σ 2

ξ ,
and {σ 2

ε,k} (about 5 sec, most of which was spent computing and
lifting the eigenvalues of the binned empirical covariance and
cross-covariance matrices). Computing the SSDF predictions
and the MSPEs takes up the remaining 7% (about 3 sec). On
the other hand, Bayesian melding takes about 80 min, since
the methodology requires a very large number of stochastic
integrals to be computed. The computational complexity of
Bayesian melding is O((N1 + N2)3), so increasing the sample
size beyond a few thousands would quickly produce an over-
whelming computational burden. Clearly, doubling the input
data sizes for Bayesian melding would lead to an eight-fold in-
crease in computational burden. On the other hand, there would
only be a two-fold increase in computational burden for SSDF.

We also consider algorithm storage requirements. Bayesian
melding requires construction of a (N1 + N2) × (N1 + N2) co-
variance matrix %, which requires 8(N1 + N2)2 bytes of RAM
assuming 64-bits double precision. Thus, its storage require-
ment grows quadratically with the data sizes. For instance,
constructing the full covariance matrix % for a data vector of
size 5000 would require 200 megabytes of RAM. On the other
hand, the main computational limitation for SSDF is its stor-
age of {Sk}, which requires 8(N1 + N2)r bytes of RAM. Use
of multiresolutional basis functions that result in sparse {Sk}
can significantly improve use of the available memory. For in-
stance, the bisquare basis functions used in this article typically
result in zeros for about 320 of the 340 basis-function entries
(about 94%) for a generic spatial location, and thus requires only
(0.06) · 8(N1 + N2)r bytes of RAM. For instance, construction
of SF for a data vector of size 5000 and r = 340 would require
only 0.81 megabytes of RAM.

5. SUMMARY AND DISCUSSION

This article examines an application of estimating AOD over
southern Africa from two remote sensing instruments—MISR
and MODIS. We introduce SSDF, a best linear unbiased predic-
tion methodology for estimating a true spatial process from two
(conditionally) independent datasets. Our methodology is de-
signed to handle massive datasets with incompatible supports,
which are typical in remote sensing. In our application to fusing
AOD from the MISR and MODIS instruments on board NASA’s
Terra satellite, we show that SSDF produces more precise esti-
mates than are produced by applying optimal spatial statistical
interpolation (i.e., FRK) to the input datasets separately. The
predictions produced by data fusion are more complete and
more representative of the underlying process than predictions
made from either of the input datasets alone. This implies that
aerosol climatologies resulting from SSDF are preferable as can-
didates for downstream input into climate models. We compare
SSDF to Bayesian melding, and while we show that SSDF has
slightly higher efficiency, we also show that it has much faster
computational speed and much lower storage requirements. In
fact, Bayesian melding is not scalable, and so it is not useful for
applications involving large-to-massive datasets.
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It is important to note that SSDF relies on very large data sizes
to derive estimates of its parameters. In other words, there needs
to be enough information in Z to obtain stable estimates of the
r × r matrix K. A larger number of basis functions, r, will allow
for more flexibility in the SSDF fit, but it also requires more data
values in Z for stable estimates. An active area of research is
selecting the appropriate class of basis functions for S(·) and the
optimal number of basis function r (see Bradley, Cressie, and
Shi 2011). In practice, we recommend using diagnostic plots
such as those in Figure 4 to assess the fit between the empirical
and theoretical semivariograms when applying SSDF.

In this article, we have chosen to estimate the SSDF pa-
rameters (using the binned method-of-moments). Hence, the
prediction standard errors given in Section 3.3 do not include
variability due to parameter estimation. A Bayesian approach
is to put priors on K, σ 2

ξ , and {σ 2
ε,k} and use a Markov chain

Monte Carlo (MCMC) algorithm to produce optimal predictions
and associated posterior uncertainties (e.g., Kang and Cressie
2011; Katzfuss and Cressie 2012). While the Bayesian approach
can provide better prediction performance and more accurate
measures of uncertainty, its overall computational burden using
MCMC is usually too onerous for use with large remote sensing
datasets.

Reduced-rank spatial models can be generalized to the spatio-
temporal setting (Wikle et al. 2001). The SRE model, ν(s) =
S(s)′η + ξ (s), can be generalized to a Spatio-Temporal Ran-
dom Effects model, ν(s, t) = St (s)′η(t) + ξ (s, t), where {η(t) :
t = 0, 1, 2, . . .} is an r-dimensional time series with mean
0 and cov(η(t1), η(t2)) = K(t1, t2); t1, t2 = 1, 2, 3, . . . (Cressie,
Shi, and Kang 2010). This will naturally lead to a spatio-
temporal statistical data-fusion methodology that we expect to
have better prediction properties than the spatial-only version,
but at the cost of building a more complex statistical model
(Nguyen et al. 2011). Before this could become a practical
technology that the remote sensing community might use for a
given set of instruments, the trade-off between prediction effi-
ciency and model/computational complexity would need to be
quantified.

APPENDIX A: ESTIMATING THE SSDF PARAMETERS

To apply SSDF, we need to specify a set of spatial basis functions
for S(·), and we need to estimate the variance–covariance parameters
K, σ 2

ξ , and {σ 2
ε,k : k = 1, 2} from detrended data. Recall from Sec-

tion 3.3 that E(ZF ) = CTF α. In the absence of prior knowledge about
spatial-covariance structure, we detrend using the ordinary least squares
estimator,

α̂ = (T′
F CCTF )−1CT′

F ZF .

With this estimate of α, we can calculate the detail residuals,

Dk ≡ Zk − (1 + ck)Tkα̂; k = 1, 2,

which reflect only the SRE process, the fine-scale variation component,
and the measurement errors. Then Dk ≡ (Dk(Bk1), . . . , Dk(BkNk

))′,
where Dk(Bkm) denotes the detail residual for footprint Bkm from in-
strument k; m = 1, . . . , Nk .

The parameters σ 2
ξ and {σ 2

ε,k} are estimated by computing the vari-
ogram and cross-variogram for small lag distance, h. We first compute
a multiple-datasets generalization of the robust variogram estimator
discussed by Cressie and Hawkins (1980) and Cressie (1993, sec. 2.4),

as follows. For h > 0, define

2γ̄kl(h) ≡

{
1

|Nkl (h)|
∑

Nkl (h) |Dk(Bkm) − Dl(Bln)| 1
2

}4

0.457 + .494
|Nkl (h)|

, (A.1)

where 2γkl(||h||) ≡ var(Zk(s + h) − Zl(s)) is the theoretical cross-
variogram (Ver Hoef and Cressie 1993), and

Nkl(h) ≡ {(Bkm, Bln) : ||p(Bkm) − p(Bln)|| = h;
m = 1, . . . , Nk; n = 1, . . . , Nl}; k ≤ l = 1, 2. (A.2)

In Equation (A.2), p(B) is the centroid of a footprint B, and h represents
the spatial lag. In practice, the set Nkl(h) is defined using a small
tolerance interval around h, since it may not be possible to find pairs
of locations that are exactly distance h apart (Cressie 1993, p. 70). The
term |Nkl(h)| denotes the number of unique elements in Nkl(h). Since
these formulas will be used here for small lags, the assumption of a
locally isotropic cross-variogram is not strong.

To estimate the measurement-error variance for instrument k, we plot
the estimated semivariogram γ̄kk(h) against h, for h near the origin.
Then, using weighted least squares (Cressie 1993, p. 97), we fit a
linear semivariogram, γ̃kk(h), since the semivariogram function may be
assumed to be linear at the small lags concerned. Kang, Liu, and Cressie
(2009) showed that, for areal data, σ 2

ε,k can be estimated unbiasedly
from the fitted line’s intercept:

σ̂ 2
ε,k = γ̃kk(0+).

To estimate σ 2
ξ , we use the method-of-moments and equate the cross-

variogram, 2γ̄12(h), for the smallest possible lag h > 0, to the average
of the expected lag-h squared differences:

2γ̄12(h)

= 1
|N12(h)|





∑

N12(h)

(
v1(B1m)σ 2

ε,1 + v2(B2n)σ 2
ε,2

)

+ σ 2
ξ

∑

N12(h)

(
1

|B1m ∩ D|
+ 1

|B2n ∩ D|
− 2|B1m ∩ B2n|

|B1m ∩ D||B2n ∩ D|

)

 .

Substituting in {σ̂ 2
ε,k}, and fixing h as small as possible, we obtain the

method-of-moments estimator,

σ̂ 2
ξ =



2|N12(h)| · γ̄12(h) −
∑

N12(h)

(
v1(B1m)σ̂ 2

ε,1 + v2(B2n)σ̂ 2
ε,2

)




×




∑

N12(h)

(
1

|B1m ∩ D|
+ 1

|B2n ∩ D|
− 2|B1m ∩ B2n|

|B1m ∩ D||B2n ∩ D|

)


−1

.

We use the cross-variogram because it allows us to fix h to be very
small.

Next we compute the binned empirical covariance matrix estimator,
%'

F (see Appendix B). With σ̂ 2
ξ , {σ̂ 2

ε,k}, and %'
F , we can estimate the

covariance parameter, K, as follows. We wish to find a K for which the
following matrix difference is “small”:

%'
F − S̄′

F KS̄F − ŪF , (A.3)

where S̄F and ŪF are the binned versions of SF and UF , respectively
(see Appendix B). We estimate K by minimizing the Frobenius norm
(e.g., Hastie 1996) of Equation (A.3). Let SF = QR, where Q and R
are the result of a QR decomposition of SF (Press et al. 1986, sec.
2.10). Then the estimate of K is,

K̂ = Q(R′)−1(%'
F − ŪF )R−1Q′ (A.4)

(see Cressie and Johannesson 2008). Positive-definiteness of K̂ is dis-
cussed in Appendix B. In summary, through Equations (A.1) and (A.4),
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we have obtained method-of-moments estimators of K, σ 2
ξ , and {σ 2

ε,k},
which are substituted into the SSDF Equations (32) and (33).

APPENDIX B: EMPIRICAL COVARIANCE AND
EMPIRICAL CROSS-COVARIANCE MATRICES

In this section, we describe the method of binning for computing
empirical covariance and empirical cross-covariance matrices. Follow-
ing Cressie and Johannesson (2008), we bin the data for instrument k
by choosing from the domain a set of Mk bins (Mk << Nk) with bin
centers {ukg : g = 1, . . . , Mk}. The choices of bin sizes and centers do
not have to be the same for both datasets, but the bin centers, {ukg},
should provide good coverage of D in both cases. Around bin center
ukg , we define a neighborhood, N(ukg), and a set of 0-1 weights,

wkgm =
{

1 if p(Bkm) ∈ N(ukg)

0 otherwise,

where m = 1, . . . , Nk , and p(B) is the centroid of B. Let Wk be
an Nk × Mk matrix defined by Wk ≡ (wk1, . . . , wkMk

), where wkg ≡
(wkg1, . . . , wkgNk

)′ is an Nk-dimensional binary vector indicating which
footprint among the Nk observations from dataset k is in the neighbor-
hood of ukg . The matrix Wk is composed of all such vectors for the bin
centers {ukg : g = 1, . . . , Mk} in dataset k.

Now, define the Mk × Mk empirical covariance matrix, %̂kk , with
elements,

%̂kk(ukg, ukh) ≡
{

VD(ukg) g = h

CD(ukg, ukh) g += h,

where

CD(ukg, ukh) =
Nk∑

a=1

Nk∑

b=1

wkgawkhbDk(Bka)Dk(Bkb)/(w′
kg1Nk

)(w′
kh1Nk

),

VD(ukg) =
Nk∑

a=1

wkgaDk(Bka)2/(w′
kg1Nk

).

We also define the M1 × M2 empirical cross-covariance matrix,

%̂12 ≡
[
CD(u1g, u2h)

]
,

where

CD(u1g, u2h)=
N1∑

a=1

N2∑

b=1

w1gaw2hbD1(B1a)D2(B2b)/((w′
1g1N1 )(w′

2h1N2 )).

More generally, the binned empirical covariance matrix, %̂kl , has
dimension Mk × Ml . To estimate K from these empirical covariance
and cross-covariance matrices, we need to concordantly bin the r × Nk

matrix Sk , the Nk × Nl matrix Ekl , and the Nk × Nk matrix Vk , as
follows. The binned versions are S̄k = SkWkB−1

k , Ēkl = W′
kEklWl ÷

(W′
k1Nk

1′
Nl

Wl), and V̄k = W′
kVkWk ÷ (W′

k1Nk
1′

Nk
Wk), where Bk ≡

diag(1′
Nk

Wk), and ÷ represents element-wise division. Notice that the
term Bk in the expression above was mistakenly missing from the
corresponding expression in the article by Cressie and Johannesson
(2008); the equivalent expression in the article by Shi and Cressie
(2007) has the proper term.

Recall from (28) that the relationship between covariance matrices
and K is,

%F − σ 2
ξ EF − VF = S′

F KSF . (B.1)

An empirical, binned version of the left-hand side of Equation (B.1)
may not be positive-definite, resulting in an estimate of K that is not
positive-definite. Following Kang, Cressie, and Shi (2010), we lift the
eigenvalues of the left-hand side in Equation (B.1) to yield positive-
definiteness while preserving total variability. First, we define binned

versions of %F and UF as follows:

%̂F ≡
[

%̂11 %̂12

%̂21 %̂22

]
and ŪF ≡

[
σ̄ 2

ξ Ē11 + σ̄ 2
1εV̄1 σ̄ 2

ξ Ē12

σ̄ 2
ξ Ē21 σ̄ 2

ξ Ē22 + σ̄ 2
2εV̄2

]

.

(B.2)

Then, we transform %̂F − ŪF into AF by normalization:

AF ≡ Ū
− 1

2
F (%̂F − ŪF )Ū

− 1
2

F .

Then, we “lift” the eigenvalues of AF to make it positive-definite (Kang,
Cressie, and Shi 2010):

λ' =
{

λ λ > λ0

λ0 exp(a(λ − λ0)) λ ≤ λ0,

where a, λ0 > 0; a is a given constant defined below, λ represents an
eigenvalue of AF , and λ' is the lifted version. The lifting procedure
above does not modify eigenvalues larger than the chosen threshold,
λ0. Below this threshold, the lifting procedure shrinks the positive
eigenvalues and makes the negative eigenvalues positive. After lifting,
all eigenvalues of AF are positive, the original order of the eigenvalues
is preserved, and the total variation (defined by the trace) of AF is
preserved.

Following Kang, Cressie, and Shi (2010), we choose λ0 to be the
(M1 + M2 − r)/(M2 + M2) quantile of all the original eigenvalues,
where Mk and r are defined above. The constant a is chosen so that
total variation defined by the sum of eigenvalues remains unchanged
after lifting. That is, choose a so that

trace(%̂F ) = trace
(
%'

F

)
,

where

%'
F ≡ Ū

1
2
F A'

F Ū
1
2
F + ŪF ,

and A'
F represents the lifted version of AF . Finally, the lifted version,

%'
F , is positive-definite and preserves the total variability of the original

matrix %̂F .

[Received October 2010. Revised October 2011.]
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