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IPCC Working Group | report provides
estimates of the anthropogenic impact on
the Earth’s energy balance (Myhre, et al.,
2013).

Contributions are not perfectly estimated,
and plausible values are reflected as
probability distributions.

Uncertainty arises because the climate
system is nonlinear with many feedback
mechanisms.

Uncertainty quantification (UQ) targets
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Identlfylng and redUCing uncertainties for Figure 8.16 from IPCC AR5 Working Group | report

quantities of interest associated with
complex systems (Smith, 2014).
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Carbon cycle scientists combine data on
carbon dioxide (CO5) concentrations with
process models to infer carbon sources
and sinks.

Estimates of CO, from satellites such as
the Orbiting Carbon Observatory-2
(OCO-2) provide substantial spatial and
temporal coverage.

Satellite observations are indirect so UQ is
challenging.

Reported uncertainties, or standard errors,

dictate relative weight of data in flux
estimation. http://oco.jpl.nasa.gov
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@ o oty OCO-2 Measurement

Observed Intensity > Key state variables,
‘e, X, for OCO-2 include
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» OCO-2 observation Y includes radiances at 1016 wavelengths in each of
three spectral bands.

» Obijective is to estimate X¢op, the total column CO, concentration, given
observed radiances Y. The estimate’s uncertainty should also be
quantified.

> Inference utilizes a forward model, a mathematical representation of the
relationship between X and Y.
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» Uncertainty quantification (UQ) relies on a probabilistic treatment of
sources of uncertainty (Smith, 2014).

> Inherent variability in the state or measurement process

» Lack of complete knowledge about fixed parameters or the physical
model of the process

» Monte Carlo simulation is a tool for propagation of uncertainty through a
model.

> Alternatives can be necessary depending on simulation scope and
computational expense.
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Randomly generated ensemble of X, and log aerosol optical depth.

Monte Carlo

For illustration, suppose
Xcoz and log aerosol
optical depth have a
bivariate Gaussian
distribution,

X~ N(l"’Xa zx)

Monte Carlo
investigation begins by
randomly generating
state vectors X.

The forward model is
evaluated for each state,
yielding synthetic
radiances Y.
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» The atmospheric state is the quantity of interest, inverse inference is
necessary.

> A retrieval algorithm to produce an estimate is required.

» The simulation framework can interrogate the propagation of uncertainty to
the retrieval.
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> Quantify the impact of retrieval choices that are subject to uncertainty on
the overall bias and variance of the retrieval errors, X — X.

» The OCO-2 retrieval problem is underdetermined and prior information is
utilized in a Bayesian setting (Rodgers, 2000).

» The retrieval algorithm produces an uncertainty estimate S.

> The retrieval algorithm requires an a priori mean p, be input as a guess
for the true ensemble mean.
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Full set-up:

Surrogate Model Experiment
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Surrogate Model Experiment

» Quantify the
impact of a
misspecified,
uncertain a priori
mean p, oOn
retrieval bias and
error covariance.

» Implement with a
computationally
efficient surrogate
model.
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Experiment Summary

» Ratio of error standard deviation to reported retrieval standard deviation

\/ Vaf(Axcog)

E(Varxcoz)
1.025 | 1.045 | 1.234
1.021 1.026 | 1.223
0.993 | 1.002 | 1.648

> As uncertainty in p, increases, variability in realized errors surpasses the

reported uncertainty.

» Bias is also largest for M2V2 treatment.
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» A geographically and seasonally comprehensive set of experiments is
forthcoming. Spatially and temporally varying marginal distributions
(px, Xx) are required.

» Methodology is general and can be potentially applied for retrievals based
on physical or empirical models.

» The approach can be used to provide an estimate of the retrieval error
variance when an operational algorithm does not routinely produce an
uncertainty estimate.

» Other applications of UQ in inverse problems can incorporate a Monte
Carlo approach.

» Atmospheric data assimilation
» Hydrologic model calibration
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