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Motivation

What is the benefit of data fusion?

» Data collection is often incomplete, sparse, and yields spatially
incompatible results. Our goal is to infer the true process from
all available data sources.

» Data fusion can capitalize on complementary strengths to
minimize prediction errors.

Difficulties encountered when fusing remote sensing datasets:
» massive size,
» change of support,
» isotropy and stationarity,

» bias correction.



Exa IM p | es Example fusion applications

e XCO2 from Orbiting Carbon Observatory-2

(OCO-2) and Greenhouse gases Observing
SATellite (GOSAT)

* Temperature and water vapor from
Atmospheric Infrared Sounder (AIRS) and
Cross-track Infrared Sounder (CrlS)

e Sea Surface Temperature from AQUA and
TERRA satellites

e Aerosol optical depth from the Multi-angle
Imaging SpectroRadiometer (MISR) and the
Moderate Resolution Imaging
Spectroradiometer (MODIS) instruments

Figure 1: Example satellite swatch from two different
instruments and their overlapping footprints
(rightmost panel)

* |n an era of multiple observations of the
same variable in Earth’s system, data fusion
makes sense both logistically and
scientifically.



AIRS and CrlS (CLIMCAPS) near surface

temperature
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AIRS and CrIS water vapor
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AIRS and CrlS fusion

* AIRS records temperature and water vapor from 2002-present. The
Cross-track Infrared Sounder (CrlS) instrument is a follow-up mission
that was launched in 2011.

* The goal of fusion between AIRS and CrlS is to produce a long climate
record that span the life-time of both missions.

e Our fusion methodology (Nguyen et al., 2012) is based on kriging,
which is a best linear unbiased predictor and which produces
estimates of uncertainties.



Overview of kriging

We assume the data are generated according to the following model:

Z = (Z(s1),Z(s2),...,Z(sn)),
Z(s) = Y(s)+e€(s)

where
» s; is the /th footprint ,
» Z is the vector of response variable,
» Y(-) is the true process,

> ¢(-) is the error process.



Overview of kriging

Under this formulation, the (linear unbiased) optimal interpolation
can be written as

where a is a N-dimensional vector of kriging coefficients at location s.



Overview of kriging

We wish to find the vector a that minimizes,

E(Y(s)— V(s)) = var(Y(s) — a' Z),
= var(Y(s)) —2a’ cov(Z, Y(s)) + a’ var(Z) a, (1)
with respect to a, subject to the unbiasedness constraint,

1 =al,



Overview of kriging

We can solve (1) for the optimal a using the method of Lagrange
multiplier. The equation for the optimal kriging coefficients is,
where

(10)(3)- () @
> ¥ = var(Z)

» c(s) = cov(Z, Y(s))
» )\ is the Lagrange multiplier



Spatial Random Effects model

We assume that the spatial process Y(-) has the following model,

which leads to the following covariance model,
Y = var(Z) = S’KS + D,

where
» S(s) is an r-dimensional basis expansion of s, and r << N,
» S=(S(s1),...,S(sn)),
» K = var(n): fixed dimension r x r,

» D is the variance-covariance matrix of the measurement errors.



Inversion of X

Since X has the convenient form
> = var(Z)=SKS + D,

We can quickly invert X using the Sherman-Morrison-Woodbury
formula

> = D'-D!S(K!'+sSD!S)'sDL.  (3)



Fusion of two instruments

We can rewrite the data models in vector forms as

Z, = Sin+e
Z, = Son+e

Given the data vectors Z; and Z,, we can simplify the problem by
stacking them to form the following model,

(2)=(s)(2)

ZF — S/,:’l’] + EF.

or equivalently,



Application to AIRS and CrlS

* We reviewed Spatial Statistical Data Fusion,
which can handle massive datasets through the
Spatial Random Effects model (along with
change-of-support and stationarity)
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 We need to, however, estimate and remove
instrument biases from AIRS and CrlS before
applying data fusion
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* We choose to use Integrated Surface Database Figure: Bias between AIRS and ISD
(ISD) as a data source for validation. as a function of elevation difference



Integrated Surface Database (ISD)

* |ISD consists of global hourly and synoptic
observations compiled from numerous sources

* Here, we matched ISD temperature and water
vapor to AIRS and CrlS, respectively, to compute

their biases

e These biases are computed based on a sliding
temporal (30 minutes) and spatial window (45
km)

* We did find an major contributing factor to the
biases is the elevation difference, which we
model and remove using random forest. Map of Station Locations

for ISD



Elevation difference versus bias
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Near Surface Temperature

Near-surface Temperature example
20150102 day
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Near Surface Temperature

Near-surface Temperature example
20150102 night
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Relative Humidity

Near-surface RH example
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Relative Humidity

Near-surface RH example
20150102 night
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Summary

* One choice of remote sensing data fusion is kriging, also known as optimal
interpolation or Gaussian process regression

* Kriging is typically O(N?3), but here we describe a methodology that is linear
O(Nr3§using the Spatial Random Effects model

e Application to AIRS and CrlIS requires a elevation-dependent bias model,
which we built using random forest and ISD data.

e For other applications, getting accurate and reliable bias estimates (and
uncertainties) are crucial for data fusion, but such validation are often
limited by the availability of validation data.
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