
Spatial Statistical Data Fusion for Remote Sensing Applications

© 2019 California Institute of Technology. Government sponsorship acknowledged.

Hai Nguyen (398L), Peter Kalmus (398K), Amy Braverman (398L)



Outline

•Motivation- Fusion of t and q from AIRS and CrIS

• Spatial Statistical Data Fusion

•Bias Estimation

•Results



Motivation



Examples

Figure 1: Example satellite swatch from two different 
instruments and their overlapping footprints 
(rightmost panel)

Example fusion applications

• XCO2 from Orbiting Carbon Observatory-2 
(OCO-2) and Greenhouse gases Observing 
SATellite (GOSAT)

• Temperature and water vapor from 
Atmospheric Infrared Sounder (AIRS) and 
Cross-track Infrared Sounder (CrIS)

• Sea Surface Temperature from AQUA and 
TERRA  satellites

• Aerosol optical depth from the Multi-angle 
Imaging SpectroRadiometer (MISR) and the 
Moderate Resolution Imaging 
Spectroradiometer (MODIS) instruments

• In an era of multiple observations of the 
same variable in Earth’s system, data fusion 
makes sense both logistically and 
scientifically.



AIRS and CrIS (CLIMCAPS) near surface 
temperature
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AIRS and CrIS water vapor
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AIRS and CrIS fusion

• AIRS records temperature and water vapor from 2002-present. The 
Cross-track Infrared Sounder (CrIS) instrument is a follow-up mission 
that was launched in 2011. 

• The goal of fusion between AIRS and CrIS is to produce a long climate 
record that span the life-time of both missions.

• Our fusion methodology (Nguyen et al., 2012) is based on kriging, 
which is a best linear unbiased predictor and which produces 
estimates of uncertainties.



Overview of kriging
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Overview of kriging



Spatial Random Effects model



Inversion of Σ



Fusion of two instruments



Application to AIRS and CrIS

• We reviewed Spatial Statistical Data Fusion, 
which can handle massive datasets through the 
Spatial Random Effects model (along with 
change-of-support and stationarity)

• We need to, however, estimate and remove 
instrument biases from AIRS and CrIS before 
applying data fusion

• We choose to use Integrated Surface Database 
(ISD) as a data source for validation.

Figure: Bias between AIRS and ISD 
as a function of elevation difference



Integrated Surface Database (ISD)

Map of Station Locations 
for ISD

• ISD consists of global hourly and synoptic 
observations compiled from numerous sources

• Here, we matched ISD temperature and water 
vapor to AIRS and CrIS, respectively, to compute 
their biases

• These biases are computed based on a sliding 
temporal (30 minutes) and spatial window (45 
km)

• We did find an major contributing factor to the 
biases is the elevation difference, which we 
model and remove using random forest.



Elevation difference versus bias

Daytime

Nighttime

West (lon < -105) East (lon > -105)

slope = -5.0122 K/km slope = -5.255 K/km

slope = -2.3582 K/km slope = -3.376 K/km



Random Forest bias estimation

(AIRS – ISD)

( [AIRS  - 𝑏𝑖𝑎𝑠]- ISD)Variable Importance

STD = 
4.01K

STD = 
1.41 K

Mean = -.5 K

Mean = .01 K



Near Surface Temperature
Near-surface Temperature example



Near Surface Temperature
Near-surface Temperature example



Near-surface RH example

Relative Humidity



Near-surface RH example

Relative Humidity



Summary

• One choice of remote sensing data fusion is kriging, also known as optimal 
interpolation or Gaussian process regression

• Kriging is typically O(N3), but here we describe a methodology that is linear 
O(Nr3) using the Spatial Random Effects model

• Application to AIRS and CrIS requires a elevation-dependent bias model, 
which we built using random forest and ISD data.

• For other applications, getting accurate and reliable bias estimates (and 
uncertainties) are crucial for data fusion, but such validation are often 
limited by the availability of validation data.
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